学生如何学习编程?:研究理论与实践与学习分析

Julie M. Smith
{"title":"学生如何学习编程?:研究理论与实践与学习分析","authors":"Julie M. Smith","doi":"10.1145/3502717.3532110","DOIUrl":null,"url":null,"abstract":"This dissertation will use the Blackbox data set to explore which student behaviors are most likely to lead to learning a programming concept, resulting in a model of student learning which will be analyzed to determine which learning theories and models it supports. Finally, whether machine learning can be used to predict student learning will be explored.","PeriodicalId":274484,"journal":{"name":"Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 2","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How Do Students Learn to Program?: Investigating Theory and Practice with Learning Analytics\",\"authors\":\"Julie M. Smith\",\"doi\":\"10.1145/3502717.3532110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This dissertation will use the Blackbox data set to explore which student behaviors are most likely to lead to learning a programming concept, resulting in a model of student learning which will be analyzed to determine which learning theories and models it supports. Finally, whether machine learning can be used to predict student learning will be explored.\",\"PeriodicalId\":274484,\"journal\":{\"name\":\"Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 2\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502717.3532110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Conference on on Innovation and Technology in Computer Science Education Vol. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502717.3532110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本论文将使用Blackbox数据集来探索哪些学生行为最有可能导致学习编程概念,从而产生一个学生学习模型,该模型将被分析以确定它支持哪些学习理论和模型。最后,探讨机器学习是否可以用于预测学生的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Do Students Learn to Program?: Investigating Theory and Practice with Learning Analytics
This dissertation will use the Blackbox data set to explore which student behaviors are most likely to lead to learning a programming concept, resulting in a model of student learning which will be analyzed to determine which learning theories and models it supports. Finally, whether machine learning can be used to predict student learning will be explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信