基于网格计算的反向传播网络

Ahlam Ansari, K. Devadkar
{"title":"基于网格计算的反向传播网络","authors":"Ahlam Ansari, K. Devadkar","doi":"10.1109/ICCICT.2012.6398173","DOIUrl":null,"url":null,"abstract":"Back Propagation Network (BPN) is one of the widely used neural network. Despite of worldwide adoption it suffers from performance degradation if the number of training data set and attributes increase. In this paper, we propose a novel method to improve the performance of BPN using Grid Computing. Using grid a set of disparate resources connected through a middleware can be used for increasing the performance of BPN.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Grid Computing based Back Propagation Network\",\"authors\":\"Ahlam Ansari, K. Devadkar\",\"doi\":\"10.1109/ICCICT.2012.6398173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Back Propagation Network (BPN) is one of the widely used neural network. Despite of worldwide adoption it suffers from performance degradation if the number of training data set and attributes increase. In this paper, we propose a novel method to improve the performance of BPN using Grid Computing. Using grid a set of disparate resources connected through a middleware can be used for increasing the performance of BPN.\",\"PeriodicalId\":319467,\"journal\":{\"name\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communication, Information & Computing Technology (ICCICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICT.2012.6398173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

反向传播网络(BPN)是一种应用广泛的神经网络。尽管它在世界范围内被广泛采用,但如果训练数据集和属性的数量增加,它的性能会下降。本文提出了一种利用网格计算提高BPN性能的新方法。使用网格(通过中间件连接的一组不同的资源)可以用于提高BPN的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grid Computing based Back Propagation Network
Back Propagation Network (BPN) is one of the widely used neural network. Despite of worldwide adoption it suffers from performance degradation if the number of training data set and attributes increase. In this paper, we propose a novel method to improve the performance of BPN using Grid Computing. Using grid a set of disparate resources connected through a middleware can be used for increasing the performance of BPN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信