用随机森林和支持向量机学习微阵列癌症数据集

Myungsook Klassen
{"title":"用随机森林和支持向量机学习微阵列癌症数据集","authors":"Myungsook Klassen","doi":"10.1109/FUTURETECH.2010.5482716","DOIUrl":null,"url":null,"abstract":"Analyzing gene expression data from microarray devices has many important applications in medicine and biology: the diagnosis of disease, accurate prognosis for particular patients, and understanding the response of a disease to drugs, to name a few. Two classifiers, random forests and support vector machines are studied in application to micro array cancer data sets. Performance of classifiers with different numbers of genes were evaluated in hope to find out if a smaller number of good genes gives a better classification rate.","PeriodicalId":380192,"journal":{"name":"2010 5th International Conference on Future Information Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning Microarray Cancer Datasets by Random Forests and Support Vector Machines\",\"authors\":\"Myungsook Klassen\",\"doi\":\"10.1109/FUTURETECH.2010.5482716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing gene expression data from microarray devices has many important applications in medicine and biology: the diagnosis of disease, accurate prognosis for particular patients, and understanding the response of a disease to drugs, to name a few. Two classifiers, random forests and support vector machines are studied in application to micro array cancer data sets. Performance of classifiers with different numbers of genes were evaluated in hope to find out if a smaller number of good genes gives a better classification rate.\",\"PeriodicalId\":380192,\"journal\":{\"name\":\"2010 5th International Conference on Future Information Technology\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Conference on Future Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUTURETECH.2010.5482716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Conference on Future Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUTURETECH.2010.5482716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分析来自微阵列设备的基因表达数据在医学和生物学中有许多重要的应用:疾病的诊断,特定患者的准确预后,以及了解疾病对药物的反应,仅举几例。研究了随机森林和支持向量机两种分类器在微阵列癌症数据集中的应用。对不同基因数量的分类器的性能进行了评价,希望找出较少数量的好基因是否具有更好的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Microarray Cancer Datasets by Random Forests and Support Vector Machines
Analyzing gene expression data from microarray devices has many important applications in medicine and biology: the diagnosis of disease, accurate prognosis for particular patients, and understanding the response of a disease to drugs, to name a few. Two classifiers, random forests and support vector machines are studied in application to micro array cancer data sets. Performance of classifiers with different numbers of genes were evaluated in hope to find out if a smaller number of good genes gives a better classification rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信