泛代数上的λ项和名义项:名义技术和高阶变量之间的逻辑联系

M. Gabbay, D. Mulligan
{"title":"泛代数上的λ项和名义项:名义技术和高阶变量之间的逻辑联系","authors":"M. Gabbay, D. Mulligan","doi":"10.1145/1577824.1577835","DOIUrl":null,"url":null,"abstract":"This paper develops the correspondence between equality reasoning with axioms using λ-terms syntax, and reasoning using nominal terms syntax. Both syntaxes involve name-abstraction: λ-terms represent functional abstraction; nominal terms represent atomsabstraction in nominal sets.\n It is not evident how to relate the two syntaxes because their intended denotations are so different. We use universal algebra, the logic of equational reasoning, a logical foundation based on an equality judgement form which is spartan but which is sufficiently expressive to encode mathematics in theory and practice.\n We investigate how syntax, algebraic theories, and derivability relate across λ-theories (algebra over λ-terms) and nominal algebra theories.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Universal algebra over lambda-terms and nominal terms: the connection in logic between nominal techniques and higher-order variables\",\"authors\":\"M. Gabbay, D. Mulligan\",\"doi\":\"10.1145/1577824.1577835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the correspondence between equality reasoning with axioms using λ-terms syntax, and reasoning using nominal terms syntax. Both syntaxes involve name-abstraction: λ-terms represent functional abstraction; nominal terms represent atomsabstraction in nominal sets.\\n It is not evident how to relate the two syntaxes because their intended denotations are so different. We use universal algebra, the logic of equational reasoning, a logical foundation based on an equality judgement form which is spartan but which is sufficiently expressive to encode mathematics in theory and practice.\\n We investigate how syntax, algebraic theories, and derivability relate across λ-theories (algebra over λ-terms) and nominal algebra theories.\",\"PeriodicalId\":262518,\"journal\":{\"name\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577824.1577835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577824.1577835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文发展了用λ项句法进行公理等价推理与用名义项句法进行推理之间的对应关系。两种语法都涉及名称抽象:λ项表示功能抽象;标称项表示标称集合中的原子抽象。如何将这两种语法联系起来并不明显,因为它们的预期表示是如此不同。我们使用通用代数,等式推理的逻辑,一个基于等式判断形式的逻辑基础,它是简单的,但它在理论和实践中足以表达数学。我们研究了语法、代数理论和可衍生性如何在λ-理论(λ-项上的代数)和名义代数理论之间联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal algebra over lambda-terms and nominal terms: the connection in logic between nominal techniques and higher-order variables
This paper develops the correspondence between equality reasoning with axioms using λ-terms syntax, and reasoning using nominal terms syntax. Both syntaxes involve name-abstraction: λ-terms represent functional abstraction; nominal terms represent atomsabstraction in nominal sets. It is not evident how to relate the two syntaxes because their intended denotations are so different. We use universal algebra, the logic of equational reasoning, a logical foundation based on an equality judgement form which is spartan but which is sufficiently expressive to encode mathematics in theory and practice. We investigate how syntax, algebraic theories, and derivability relate across λ-theories (algebra over λ-terms) and nominal algebra theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信