空化泡崩塌的计算模拟

R. Burda, P. Rudolf
{"title":"空化泡崩塌的计算模拟","authors":"R. Burda, P. Rudolf","doi":"10.21495/5896-3-094","DOIUrl":null,"url":null,"abstract":": Cavitation threatens lifetime of hydraulic machines, ship propellers or diesel injection nozzles, but can also serve as efficient way of pathogenic microorganisms eradication, water disinfection and chemical residuals removal. While classical Rayleigh-Plesset equation provides suitable 1D tool for description of the bubble behavior away from the wall, it suffers serious problems close to solid boundary due to its assumption of bubble sphericity during all stages of the bubble life. Therefore, a detail computational simulation based on RANS equations and multiphase Volume of Fluid approach was performed. Simulation was able to capture microjet, which deforms the bubble in solid wall vicinity, penetrates through bubble interior and is responsible for transformation from vapor bubble to vapor ring. It is important that numerical solution enabled detailed spatial description of the bubble evolution and allowed to distinguish between the pressure peaks caused by microjet impact on the wall and bubble collapse, thereby enhancing our understanding of the bubble collapse close to the solid boundary.","PeriodicalId":383836,"journal":{"name":"Engineering Mechanics 2020","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTATIONAL SIMULATION OF CAVITATION BUBBLE COLLAPSE\",\"authors\":\"R. Burda, P. Rudolf\",\"doi\":\"10.21495/5896-3-094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Cavitation threatens lifetime of hydraulic machines, ship propellers or diesel injection nozzles, but can also serve as efficient way of pathogenic microorganisms eradication, water disinfection and chemical residuals removal. While classical Rayleigh-Plesset equation provides suitable 1D tool for description of the bubble behavior away from the wall, it suffers serious problems close to solid boundary due to its assumption of bubble sphericity during all stages of the bubble life. Therefore, a detail computational simulation based on RANS equations and multiphase Volume of Fluid approach was performed. Simulation was able to capture microjet, which deforms the bubble in solid wall vicinity, penetrates through bubble interior and is responsible for transformation from vapor bubble to vapor ring. It is important that numerical solution enabled detailed spatial description of the bubble evolution and allowed to distinguish between the pressure peaks caused by microjet impact on the wall and bubble collapse, thereby enhancing our understanding of the bubble collapse close to the solid boundary.\",\"PeriodicalId\":383836,\"journal\":{\"name\":\"Engineering Mechanics 2020\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Mechanics 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21495/5896-3-094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Mechanics 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21495/5896-3-094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

:空化对液压机、船舶螺旋桨、柴油喷油器的使用寿命构成威胁,但也是消灭病原微生物、水消毒、去除化学残留物的有效途径。经典的Rayleigh-Plesset方程为描述远离壁面的气泡行为提供了合适的一维工具,但在接近固体边界时,由于它在气泡生命的所有阶段都假设气泡为球形,因此存在严重的问题。因此,基于RANS方程和多相流体体积法进行了详细的计算仿真。模拟能够捕捉到微射流,微射流使固体壁面附近的气泡变形,并穿透气泡内部,由汽泡转变为汽环。重要的是,数值解可以对气泡演化进行详细的空间描述,并可以区分微射流撞击壁面引起的压力峰值和气泡破裂,从而增强我们对靠近固体边界的气泡破裂的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPUTATIONAL SIMULATION OF CAVITATION BUBBLE COLLAPSE
: Cavitation threatens lifetime of hydraulic machines, ship propellers or diesel injection nozzles, but can also serve as efficient way of pathogenic microorganisms eradication, water disinfection and chemical residuals removal. While classical Rayleigh-Plesset equation provides suitable 1D tool for description of the bubble behavior away from the wall, it suffers serious problems close to solid boundary due to its assumption of bubble sphericity during all stages of the bubble life. Therefore, a detail computational simulation based on RANS equations and multiphase Volume of Fluid approach was performed. Simulation was able to capture microjet, which deforms the bubble in solid wall vicinity, penetrates through bubble interior and is responsible for transformation from vapor bubble to vapor ring. It is important that numerical solution enabled detailed spatial description of the bubble evolution and allowed to distinguish between the pressure peaks caused by microjet impact on the wall and bubble collapse, thereby enhancing our understanding of the bubble collapse close to the solid boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信