基于Contourlet变换的面部表情识别新方法

Lin-Bo Cai, Z. Ying
{"title":"基于Contourlet变换的面部表情识别新方法","authors":"Lin-Bo Cai, Z. Ying","doi":"10.1109/ICWAPR.2009.5207457","DOIUrl":null,"url":null,"abstract":"Contourlet Transform provides a flexible multiresolution, local and directional image expansion and a sparse representation for two dimensional piecewise smooth signal resembling images. It overcomes the weakness of wavelet transform in dealing with high dimensional signals. In this paper, the theory of Contourlet Transform is introduced and a new approach of facial expression recognition based on Contourlet Transform is proposed. Locally Linear Embedding is then applied for feature dimensionality reduction, and Vector Support Machine is used to classify the seven expressions (anger, disgust, fear, happiness, neutral, sadness and surprise) of JAFFE database. Both Wavelet Transform and Principal Component Analysis (PCA) algorithm are carried out to compare with the approach proposed. Experimental results show that the proposed approach gets better recognition rate than both Wavelet Transform and Principal Component Analysis. The facial expression recognition based on Contourlet Transform is an effective and feasible algorithm.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A new approach of facial expression recognition based on Contourlet Transform\",\"authors\":\"Lin-Bo Cai, Z. Ying\",\"doi\":\"10.1109/ICWAPR.2009.5207457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contourlet Transform provides a flexible multiresolution, local and directional image expansion and a sparse representation for two dimensional piecewise smooth signal resembling images. It overcomes the weakness of wavelet transform in dealing with high dimensional signals. In this paper, the theory of Contourlet Transform is introduced and a new approach of facial expression recognition based on Contourlet Transform is proposed. Locally Linear Embedding is then applied for feature dimensionality reduction, and Vector Support Machine is used to classify the seven expressions (anger, disgust, fear, happiness, neutral, sadness and surprise) of JAFFE database. Both Wavelet Transform and Principal Component Analysis (PCA) algorithm are carried out to compare with the approach proposed. Experimental results show that the proposed approach gets better recognition rate than both Wavelet Transform and Principal Component Analysis. The facial expression recognition based on Contourlet Transform is an effective and feasible algorithm.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

Contourlet变换为类似图像的二维分段平滑信号提供了灵活的多分辨率、局部和定向图像扩展和稀疏表示。它克服了小波变换在处理高维信号时的缺点。介绍了Contourlet变换的基本原理,提出了一种基于Contourlet变换的人脸表情识别新方法。然后利用局部线性嵌入对特征进行降维,并利用向量支持机对JAFFE数据库中的七种表情(愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶)进行分类。用小波变换和主成分分析(PCA)算法与所提出的方法进行了比较。实验结果表明,该方法比小波变换和主成分分析具有更好的识别率。基于Contourlet变换的人脸表情识别是一种有效可行的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach of facial expression recognition based on Contourlet Transform
Contourlet Transform provides a flexible multiresolution, local and directional image expansion and a sparse representation for two dimensional piecewise smooth signal resembling images. It overcomes the weakness of wavelet transform in dealing with high dimensional signals. In this paper, the theory of Contourlet Transform is introduced and a new approach of facial expression recognition based on Contourlet Transform is proposed. Locally Linear Embedding is then applied for feature dimensionality reduction, and Vector Support Machine is used to classify the seven expressions (anger, disgust, fear, happiness, neutral, sadness and surprise) of JAFFE database. Both Wavelet Transform and Principal Component Analysis (PCA) algorithm are carried out to compare with the approach proposed. Experimental results show that the proposed approach gets better recognition rate than both Wavelet Transform and Principal Component Analysis. The facial expression recognition based on Contourlet Transform is an effective and feasible algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信