可见光范围内的非共振超透镜(演示记录)

N. Litchinitser, Jingbo Sun, M. Shalaev
{"title":"可见光范围内的非共振超透镜(演示记录)","authors":"N. Litchinitser, Jingbo Sun, M. Shalaev","doi":"10.1117/12.2190274","DOIUrl":null,"url":null,"abstract":"A metamaterial hyperlens offers a unique solution to overcome the diffraction limit by transforming evanescent waves responsible for imaging subwavelength features of an object into propagating waves. However, the first realizations of optical hyperlenses were limited by a narrow working bandwidth and significant resonance-induced loss. Here, we report the first experimental demonstration of a non-resonant waveguide-coupled hyperlens operating in the visible wavelength range that was fabricated using a combination of top-down and bottom-up fabrication approaches. A detailed investigation of various materials systems proves that a radial fan-shaped configuration is superior to the concentric layer-based configuration in that it relies on non-resonant negative dielectric response, and, as a result, enables broadband and low-loss performance in the visible range. While the majority of applications of a hyperlens is expected to be in optical frequency range, the challenge of fabricating non-resonant radial structures at optical frequencies has not been overcome until now.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-resonant hyperlens in the visible range (Presentation Recording)\",\"authors\":\"N. Litchinitser, Jingbo Sun, M. Shalaev\",\"doi\":\"10.1117/12.2190274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A metamaterial hyperlens offers a unique solution to overcome the diffraction limit by transforming evanescent waves responsible for imaging subwavelength features of an object into propagating waves. However, the first realizations of optical hyperlenses were limited by a narrow working bandwidth and significant resonance-induced loss. Here, we report the first experimental demonstration of a non-resonant waveguide-coupled hyperlens operating in the visible wavelength range that was fabricated using a combination of top-down and bottom-up fabrication approaches. A detailed investigation of various materials systems proves that a radial fan-shaped configuration is superior to the concentric layer-based configuration in that it relies on non-resonant negative dielectric response, and, as a result, enables broadband and low-loss performance in the visible range. While the majority of applications of a hyperlens is expected to be in optical frequency range, the challenge of fabricating non-resonant radial structures at optical frequencies has not been overcome until now.\",\"PeriodicalId\":432358,\"journal\":{\"name\":\"SPIE NanoScience + Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE NanoScience + Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2190274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2190274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种超材料超透镜提供了一种独特的解决方案,通过将负责成像物体亚波长特征的倏逝波转化为传播波来克服衍射极限。然而,光学超透镜的首次实现受到狭窄的工作带宽和显著的共振引起的损失的限制。在这里,我们报告了在可见光波长范围内工作的非谐振波导耦合超透镜的第一个实验演示,该超透镜采用自上而下和自下而上的制造方法相结合的方式制造。对各种材料系统的详细研究证明,径向扇形结构优于同心层结构,因为它依赖于非谐振负介电响应,因此在可见范围内实现宽带和低损耗性能。虽然超透镜的大多数应用预计将在光学频率范围内,但在光学频率上制造非谐振径向结构的挑战直到现在还没有克服。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-resonant hyperlens in the visible range (Presentation Recording)
A metamaterial hyperlens offers a unique solution to overcome the diffraction limit by transforming evanescent waves responsible for imaging subwavelength features of an object into propagating waves. However, the first realizations of optical hyperlenses were limited by a narrow working bandwidth and significant resonance-induced loss. Here, we report the first experimental demonstration of a non-resonant waveguide-coupled hyperlens operating in the visible wavelength range that was fabricated using a combination of top-down and bottom-up fabrication approaches. A detailed investigation of various materials systems proves that a radial fan-shaped configuration is superior to the concentric layer-based configuration in that it relies on non-resonant negative dielectric response, and, as a result, enables broadband and low-loss performance in the visible range. While the majority of applications of a hyperlens is expected to be in optical frequency range, the challenge of fabricating non-resonant radial structures at optical frequencies has not been overcome until now.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信