PSS应用工况相关ARMA模型

P. Zhao, O. Malik
{"title":"PSS应用工况相关ARMA模型","authors":"P. Zhao, O. Malik","doi":"10.1109/PES.2004.1373177","DOIUrl":null,"url":null,"abstract":"Adaptive power system stabilizers (APSS) have attracted plenty of interests in recent years. Most APSSs are model-based. The widely used models in APSSs are auto regression moving average (ARMA) and nonlinear auto regression moving average with exogeneous inputs (NARMAX) models. In This work, an operating-condition-dependent (OC-dependent) ARMA model is presented and realized by local model networks (LMN). The proposed model has the capability of fast learning similar to the RBF-based NARMAX model and can work for various operating conditions without updating its parameters. The effectiveness of the model is verified by simulation studies.","PeriodicalId":236779,"journal":{"name":"IEEE Power Engineering Society General Meeting, 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Operating-condition-dependent ARMA model for PSS application\",\"authors\":\"P. Zhao, O. Malik\",\"doi\":\"10.1109/PES.2004.1373177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive power system stabilizers (APSS) have attracted plenty of interests in recent years. Most APSSs are model-based. The widely used models in APSSs are auto regression moving average (ARMA) and nonlinear auto regression moving average with exogeneous inputs (NARMAX) models. In This work, an operating-condition-dependent (OC-dependent) ARMA model is presented and realized by local model networks (LMN). The proposed model has the capability of fast learning similar to the RBF-based NARMAX model and can work for various operating conditions without updating its parameters. The effectiveness of the model is verified by simulation studies.\",\"PeriodicalId\":236779,\"journal\":{\"name\":\"IEEE Power Engineering Society General Meeting, 2004.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power Engineering Society General Meeting, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PES.2004.1373177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Engineering Society General Meeting, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2004.1373177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自适应电力系统稳定器(APSS)近年来引起了人们的广泛关注。大多数apss都是基于模型的。在apss中广泛使用的模型有自回归移动平均(ARMA)模型和带外源输入的非线性自回归移动平均(NARMAX)模型。在这项工作中,提出了一个依赖于操作条件(OC-dependent)的ARMA模型,并通过局部模型网络(LMN)实现。该模型具有与基于rbf的NARMAX模型相似的快速学习能力,可以在不更新参数的情况下适应各种工况。仿真研究验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operating-condition-dependent ARMA model for PSS application
Adaptive power system stabilizers (APSS) have attracted plenty of interests in recent years. Most APSSs are model-based. The widely used models in APSSs are auto regression moving average (ARMA) and nonlinear auto regression moving average with exogeneous inputs (NARMAX) models. In This work, an operating-condition-dependent (OC-dependent) ARMA model is presented and realized by local model networks (LMN). The proposed model has the capability of fast learning similar to the RBF-based NARMAX model and can work for various operating conditions without updating its parameters. The effectiveness of the model is verified by simulation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信