面向无监督变形医学图像配准的不确定性学习

Xuan Gong, Luckyson Khaidem, Wentao Zhu, Baochang Zhang, D. Doermann
{"title":"面向无监督变形医学图像配准的不确定性学习","authors":"Xuan Gong, Luckyson Khaidem, Wentao Zhu, Baochang Zhang, D. Doermann","doi":"10.1109/WACV51458.2022.00162","DOIUrl":null,"url":null,"abstract":"Uncertainty estimation in medical image registration enables surgeons to evaluate the operative risk based on the trustworthiness of the registered image data thus of paramount importance for practical clinical applications. Despite the recent promising results obtained with deep unsupervised learning-based registration methods, reasoning about uncertainty of unsupervised registration models remains largely unexplored. In this work, we propose a predictive module to learn the registration and uncertainty in correspondence simultaneously. Our framework introduces empirical randomness and registration error based uncertainty prediction. We systematically assess the performances on two MRI datasets with different ensemble paradigms. Experimental results highlight that our proposed framework significantly improves the registration accuracy and uncertainty compared with the baseline.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Uncertainty Learning towards Unsupervised Deformable Medical Image Registration\",\"authors\":\"Xuan Gong, Luckyson Khaidem, Wentao Zhu, Baochang Zhang, D. Doermann\",\"doi\":\"10.1109/WACV51458.2022.00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncertainty estimation in medical image registration enables surgeons to evaluate the operative risk based on the trustworthiness of the registered image data thus of paramount importance for practical clinical applications. Despite the recent promising results obtained with deep unsupervised learning-based registration methods, reasoning about uncertainty of unsupervised registration models remains largely unexplored. In this work, we propose a predictive module to learn the registration and uncertainty in correspondence simultaneously. Our framework introduces empirical randomness and registration error based uncertainty prediction. We systematically assess the performances on two MRI datasets with different ensemble paradigms. Experimental results highlight that our proposed framework significantly improves the registration accuracy and uncertainty compared with the baseline.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

医学图像配准中的不确定性估计使外科医生能够根据配准图像数据的可信度来评估手术风险,因此对实际临床应用至关重要。尽管最近基于深度无监督学习的注册方法取得了令人鼓舞的结果,但关于无监督注册模型的不确定性的推理仍在很大程度上未被探索。在这项工作中,我们提出了一个预测模块来同时学习对应中的配准和不确定性。我们的框架引入了经验随机性和基于配准误差的不确定性预测。我们系统地评估了两种不同集成范式的MRI数据集上的性能。实验结果表明,与基线相比,我们提出的框架显著提高了配准精度和不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty Learning towards Unsupervised Deformable Medical Image Registration
Uncertainty estimation in medical image registration enables surgeons to evaluate the operative risk based on the trustworthiness of the registered image data thus of paramount importance for practical clinical applications. Despite the recent promising results obtained with deep unsupervised learning-based registration methods, reasoning about uncertainty of unsupervised registration models remains largely unexplored. In this work, we propose a predictive module to learn the registration and uncertainty in correspondence simultaneously. Our framework introduces empirical randomness and registration error based uncertainty prediction. We systematically assess the performances on two MRI datasets with different ensemble paradigms. Experimental results highlight that our proposed framework significantly improves the registration accuracy and uncertainty compared with the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信