{"title":"整数除法的硬件算法","authors":"N. Takagi, Shunsuke Kadowaki, K. Takagi","doi":"10.1109/ARITH.2005.6","DOIUrl":null,"url":null,"abstract":"A hardware algorithm for integer division is proposed. It is based on the digit-recurrence, non-restoring division algorithm. Fast computation is achieved by the use of the radix-2 signed-digit representation. The algorithm does not require normalization of the divisor, and hence, does not require area-consuming leading one (or zero) detection nor shifts of variable-amount. Combinational (unfolded) implementation of the algorithm yields a regularly structured array divider, where pipelining is possible for increasing the throughput. Sequential implementation yields a compact divider.","PeriodicalId":194902,"journal":{"name":"17th IEEE Symposium on Computer Arithmetic (ARITH'05)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A hardware algorithm for integer division\",\"authors\":\"N. Takagi, Shunsuke Kadowaki, K. Takagi\",\"doi\":\"10.1109/ARITH.2005.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hardware algorithm for integer division is proposed. It is based on the digit-recurrence, non-restoring division algorithm. Fast computation is achieved by the use of the radix-2 signed-digit representation. The algorithm does not require normalization of the divisor, and hence, does not require area-consuming leading one (or zero) detection nor shifts of variable-amount. Combinational (unfolded) implementation of the algorithm yields a regularly structured array divider, where pipelining is possible for increasing the throughput. Sequential implementation yields a compact divider.\",\"PeriodicalId\":194902,\"journal\":{\"name\":\"17th IEEE Symposium on Computer Arithmetic (ARITH'05)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE Symposium on Computer Arithmetic (ARITH'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2005.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE Symposium on Computer Arithmetic (ARITH'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hardware algorithm for integer division is proposed. It is based on the digit-recurrence, non-restoring division algorithm. Fast computation is achieved by the use of the radix-2 signed-digit representation. The algorithm does not require normalization of the divisor, and hence, does not require area-consuming leading one (or zero) detection nor shifts of variable-amount. Combinational (unfolded) implementation of the algorithm yields a regularly structured array divider, where pipelining is possible for increasing the throughput. Sequential implementation yields a compact divider.