包覆非磁性粒子的Mie共振基超材料间的近场辐射传热

Lu Lu, Jinlin Song, K. Zhou, Q. Cheng
{"title":"包覆非磁性粒子的Mie共振基超材料间的近场辐射传热","authors":"Lu Lu, Jinlin Song, K. Zhou, Q. Cheng","doi":"10.1115/mnhmt2019-3998","DOIUrl":null,"url":null,"abstract":"\n Near-field radiative heat transfer between Mie resonance-based metamaterials composed of SiC/d-Si (silicon carbide and doped silicon) core/shell particles immersed in aligned nematic liquid crystals are numerically investigated. The metamaterials composed of core/shell particles exhibit superior performances of enhanced heat transfer and obvious modulation effect when compared to that without shell. The underlying mechanism can be explained that the excitation of Fröhlich mode and epsilon-near-zero (ENZ) resonances both contribute to the total heat flux. Modulation of near-field radiative heat transfer can be realized with the host material of aligned nematic liquid crystals. The largest modulation ratio could be achieved as high as 0.45 for metamaterials composed of core/shell SiC/d-Si particles, and the corresponding heat flux is higher than other similar materials such as LiTaO3/GaSb and Ge/LiTaO3. While with the same volume filling fraction, the modulation ratio of that composed of SiC particles is only 0.2. We show that the core/shell nanoparticles dispersed liquid crystals (NDLCs) have a great potential in enhancing the near-field radiative heat transfer in both the p and s polarizations with the radii of 0.65 μm, and Mie-metamaterials are shown for the first time to modulate heat flux within sub-milliseconds.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Field Radiative Heat Transfer Between Mie Resonance-Based Metamaterials Made of Coated Nonmagnetic Particles\",\"authors\":\"Lu Lu, Jinlin Song, K. Zhou, Q. Cheng\",\"doi\":\"10.1115/mnhmt2019-3998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Near-field radiative heat transfer between Mie resonance-based metamaterials composed of SiC/d-Si (silicon carbide and doped silicon) core/shell particles immersed in aligned nematic liquid crystals are numerically investigated. The metamaterials composed of core/shell particles exhibit superior performances of enhanced heat transfer and obvious modulation effect when compared to that without shell. The underlying mechanism can be explained that the excitation of Fröhlich mode and epsilon-near-zero (ENZ) resonances both contribute to the total heat flux. Modulation of near-field radiative heat transfer can be realized with the host material of aligned nematic liquid crystals. The largest modulation ratio could be achieved as high as 0.45 for metamaterials composed of core/shell SiC/d-Si particles, and the corresponding heat flux is higher than other similar materials such as LiTaO3/GaSb and Ge/LiTaO3. While with the same volume filling fraction, the modulation ratio of that composed of SiC particles is only 0.2. We show that the core/shell nanoparticles dispersed liquid crystals (NDLCs) have a great potential in enhancing the near-field radiative heat transfer in both the p and s polarizations with the radii of 0.65 μm, and Mie-metamaterials are shown for the first time to modulate heat flux within sub-milliseconds.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-3998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-3998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由SiC/d-Si(碳化硅和掺杂硅)核/壳粒子组成的Mie共振基超材料浸入向列相液晶中的近场辐射传热。与不含壳层的超材料相比,由核/壳层粒子组成的超材料具有更好的强化传热性能和明显的调制效应。其基本机制可以解释为Fröhlich模式和epsilon-near-zero (ENZ)共振的激发都对总热流有贡献。以排列向列液晶为主体材料,可以实现近场辐射换热的调制。由核心/壳层SiC/d-Si颗粒组成的超材料的最大调制比可达0.45,其热流密度高于LiTaO3/GaSb和Ge/LiTaO3等类似材料。在体积填充分数相同的情况下,由SiC颗粒组成的调制比仅为0.2。研究结果表明,核/壳纳米颗粒分散液晶(ndlc)在半径为0.65 μm的p和s极化范围内具有增强近场辐射换热的潜力,并首次证明了纳米超材料可以在亚毫秒内调制热流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-Field Radiative Heat Transfer Between Mie Resonance-Based Metamaterials Made of Coated Nonmagnetic Particles
Near-field radiative heat transfer between Mie resonance-based metamaterials composed of SiC/d-Si (silicon carbide and doped silicon) core/shell particles immersed in aligned nematic liquid crystals are numerically investigated. The metamaterials composed of core/shell particles exhibit superior performances of enhanced heat transfer and obvious modulation effect when compared to that without shell. The underlying mechanism can be explained that the excitation of Fröhlich mode and epsilon-near-zero (ENZ) resonances both contribute to the total heat flux. Modulation of near-field radiative heat transfer can be realized with the host material of aligned nematic liquid crystals. The largest modulation ratio could be achieved as high as 0.45 for metamaterials composed of core/shell SiC/d-Si particles, and the corresponding heat flux is higher than other similar materials such as LiTaO3/GaSb and Ge/LiTaO3. While with the same volume filling fraction, the modulation ratio of that composed of SiC particles is only 0.2. We show that the core/shell nanoparticles dispersed liquid crystals (NDLCs) have a great potential in enhancing the near-field radiative heat transfer in both the p and s polarizations with the radii of 0.65 μm, and Mie-metamaterials are shown for the first time to modulate heat flux within sub-milliseconds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信