一种改进的多目标粒子群优化Leader引导方法

Kian Sheng Lim, S. Buyamin, Anita Ahmad, Z. Ibrahim
{"title":"一种改进的多目标粒子群优化Leader引导方法","authors":"Kian Sheng Lim, S. Buyamin, Anita Ahmad, Z. Ibrahim","doi":"10.1109/AMS.2012.29","DOIUrl":null,"url":null,"abstract":"Generally, Particle Swarm Optimization based Multi-Objective Optimization algorithm use only one leader to guide the particles flight in the velocity update. Thus, this paper introduces a Multi Leaders Multi Objective Optimization algorithm which is an initial implementation of multiple leaders in guiding the particles flight to search for optimum solutions. The multiple leaders' method is implemented by summing up all the distance between a particle and all of its leaders during velocity update The algorithm is tested on several benchmark test problems to measure its convergence and diversity ability in finding the best Pareto Front. The results show a promising and competitive performance when compared to the other algorithms.","PeriodicalId":407900,"journal":{"name":"2012 Sixth Asia Modelling Symposium","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Improved Leader Guidance in Multi Objective Particle Swarm Optimization\",\"authors\":\"Kian Sheng Lim, S. Buyamin, Anita Ahmad, Z. Ibrahim\",\"doi\":\"10.1109/AMS.2012.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generally, Particle Swarm Optimization based Multi-Objective Optimization algorithm use only one leader to guide the particles flight in the velocity update. Thus, this paper introduces a Multi Leaders Multi Objective Optimization algorithm which is an initial implementation of multiple leaders in guiding the particles flight to search for optimum solutions. The multiple leaders' method is implemented by summing up all the distance between a particle and all of its leaders during velocity update The algorithm is tested on several benchmark test problems to measure its convergence and diversity ability in finding the best Pareto Front. The results show a promising and competitive performance when compared to the other algorithms.\",\"PeriodicalId\":407900,\"journal\":{\"name\":\"2012 Sixth Asia Modelling Symposium\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Sixth Asia Modelling Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2012.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth Asia Modelling Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通常,基于粒子群优化的多目标优化算法在速度更新中只使用一个leader来引导粒子飞行。为此,本文引入了多leader多目标优化算法,该算法是多leader引导粒子飞行寻找最优解的初步实现。通过对速度更新过程中粒子与所有粒子之间的距离求和来实现多leader算法,并在若干基准测试问题上对算法进行了测试,以衡量其寻找最佳Pareto Front的收敛性和多样性。结果表明,与其他算法相比,该算法具有良好的性能和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Leader Guidance in Multi Objective Particle Swarm Optimization
Generally, Particle Swarm Optimization based Multi-Objective Optimization algorithm use only one leader to guide the particles flight in the velocity update. Thus, this paper introduces a Multi Leaders Multi Objective Optimization algorithm which is an initial implementation of multiple leaders in guiding the particles flight to search for optimum solutions. The multiple leaders' method is implemented by summing up all the distance between a particle and all of its leaders during velocity update The algorithm is tested on several benchmark test problems to measure its convergence and diversity ability in finding the best Pareto Front. The results show a promising and competitive performance when compared to the other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信