{"title":"用于峰值-平均功率包络跟踪的单电感多电容降压变换器","authors":"V. I. Kumar, A. Dey, S. Kapat","doi":"10.1109/APEC.2018.8341540","DOIUrl":null,"url":null,"abstract":"A linear power amplifier (PA) is used for powering high-bandwidth modulated signals with high peak-to-average power ratio (PAPR). The efficiency of a PA significantly degrades using a fixed supply voltage, and an envelope-tracking (ET) power supply remains an essential alternative for improving the energy efficiency. This paper shows that a single-inductor multi-capacitor (SIMC) buck converter-based ET power supply can (a) achieve ultra-wide bandwidth for high PAPR envelopes and (b) simultaneously improve the overall dynamic energy efficiency of both the PA and the power supply. The proposed architecture employs a hybrid combination of inductive switching buck based ET power supply along with a bank of multiple output capacitors. This hybrid architecture is helpful to trade-off between the bandwidth and the output voltage ripple in order to preserve the linearity of PA. A hardware prototype is made. The experimental results are demonstrated to justify the effectiveness of tracking high-bandwidth PAPR envelopes while simultaneously minimizing the PA losses for low frequency envelopes. The SIMC buck converter achieves more than 85 % efficiency with the 7.5 W peak power level.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single-inductor multi-capacitor buck converter for high peak-to-average power envelope tracking\",\"authors\":\"V. I. Kumar, A. Dey, S. Kapat\",\"doi\":\"10.1109/APEC.2018.8341540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear power amplifier (PA) is used for powering high-bandwidth modulated signals with high peak-to-average power ratio (PAPR). The efficiency of a PA significantly degrades using a fixed supply voltage, and an envelope-tracking (ET) power supply remains an essential alternative for improving the energy efficiency. This paper shows that a single-inductor multi-capacitor (SIMC) buck converter-based ET power supply can (a) achieve ultra-wide bandwidth for high PAPR envelopes and (b) simultaneously improve the overall dynamic energy efficiency of both the PA and the power supply. The proposed architecture employs a hybrid combination of inductive switching buck based ET power supply along with a bank of multiple output capacitors. This hybrid architecture is helpful to trade-off between the bandwidth and the output voltage ripple in order to preserve the linearity of PA. A hardware prototype is made. The experimental results are demonstrated to justify the effectiveness of tracking high-bandwidth PAPR envelopes while simultaneously minimizing the PA losses for low frequency envelopes. The SIMC buck converter achieves more than 85 % efficiency with the 7.5 W peak power level.\",\"PeriodicalId\":113756,\"journal\":{\"name\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2018.8341540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-inductor multi-capacitor buck converter for high peak-to-average power envelope tracking
A linear power amplifier (PA) is used for powering high-bandwidth modulated signals with high peak-to-average power ratio (PAPR). The efficiency of a PA significantly degrades using a fixed supply voltage, and an envelope-tracking (ET) power supply remains an essential alternative for improving the energy efficiency. This paper shows that a single-inductor multi-capacitor (SIMC) buck converter-based ET power supply can (a) achieve ultra-wide bandwidth for high PAPR envelopes and (b) simultaneously improve the overall dynamic energy efficiency of both the PA and the power supply. The proposed architecture employs a hybrid combination of inductive switching buck based ET power supply along with a bank of multiple output capacitors. This hybrid architecture is helpful to trade-off between the bandwidth and the output voltage ripple in order to preserve the linearity of PA. A hardware prototype is made. The experimental results are demonstrated to justify the effectiveness of tracking high-bandwidth PAPR envelopes while simultaneously minimizing the PA losses for low frequency envelopes. The SIMC buck converter achieves more than 85 % efficiency with the 7.5 W peak power level.