发布分类敏感属性的语义匿名化

A. A. Mubark, Emad Elabd, Hatem M. Abdelkader
{"title":"发布分类敏感属性的语义匿名化","authors":"A. A. Mubark, Emad Elabd, Hatem M. Abdelkader","doi":"10.1109/KST.2016.7440495","DOIUrl":null,"url":null,"abstract":"The need of improving the privacy on data publisher becomes more important because data grows very fast. Traditional methods for privacy preserving data publishing cannot prevent privacy leakage. This causes the continuous research to find better methods to prevent privacy leakage. K-anonymity and L-diversity are well-known techniques for data privacy preserving. These techniques cannot prevent the similarity attack on the data privacy because they did not take into consider the semantic relation between the sensitive attributes of the categorical data. In this paper, we proposed an approach to categorical data preservation based on Domain-based of semantic rules to overcome the similarity attacks. The experimental results of the proposal approach focused to categorical data presented. The results showed that the semantic anonymization increases the privacy level with effect data utility.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Semantic anonymization in publishing categorical sensitive attributes\",\"authors\":\"A. A. Mubark, Emad Elabd, Hatem M. Abdelkader\",\"doi\":\"10.1109/KST.2016.7440495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need of improving the privacy on data publisher becomes more important because data grows very fast. Traditional methods for privacy preserving data publishing cannot prevent privacy leakage. This causes the continuous research to find better methods to prevent privacy leakage. K-anonymity and L-diversity are well-known techniques for data privacy preserving. These techniques cannot prevent the similarity attack on the data privacy because they did not take into consider the semantic relation between the sensitive attributes of the categorical data. In this paper, we proposed an approach to categorical data preservation based on Domain-based of semantic rules to overcome the similarity attacks. The experimental results of the proposal approach focused to categorical data presented. The results showed that the semantic anonymization increases the privacy level with effect data utility.\",\"PeriodicalId\":350687,\"journal\":{\"name\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST.2016.7440495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于数据的快速增长,提高数据发布者的隐私性的需求变得更加重要。传统的隐私保护数据发布方法无法防止隐私泄露。这促使人们不断研究寻找更好的防止隐私泄露的方法。k -匿名和l-多样性是众所周知的数据隐私保护技术。这些技术由于没有考虑分类数据敏感属性之间的语义关系,不能有效地防止对数据隐私的相似攻击。本文提出了一种基于语义规则域的分类数据保存方法,以克服相似性攻击。提出了针对分类数据的建议方法的实验结果。结果表明,语义匿名化提高了数据的隐私级别,具有良好的数据效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic anonymization in publishing categorical sensitive attributes
The need of improving the privacy on data publisher becomes more important because data grows very fast. Traditional methods for privacy preserving data publishing cannot prevent privacy leakage. This causes the continuous research to find better methods to prevent privacy leakage. K-anonymity and L-diversity are well-known techniques for data privacy preserving. These techniques cannot prevent the similarity attack on the data privacy because they did not take into consider the semantic relation between the sensitive attributes of the categorical data. In this paper, we proposed an approach to categorical data preservation based on Domain-based of semantic rules to overcome the similarity attacks. The experimental results of the proposal approach focused to categorical data presented. The results showed that the semantic anonymization increases the privacy level with effect data utility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信