美国蒙特卡罗算法的自动后向微分-条件期望和指标函数的ADD

Christian P. Fries
{"title":"美国蒙特卡罗算法的自动后向微分-条件期望和指标函数的ADD","authors":"Christian P. Fries","doi":"10.2139/ssrn.3000822","DOIUrl":null,"url":null,"abstract":"In this note we derive a modified backward automatic differentiation (a.k.a. adjoint automatic differentiation, adjoint algorithmic differentiation) for algorithms containing conditional expectation operators and/or indicator functions. Bermudan option and xVA valuation are prototypical examples. We consider the Bermudan product valuation, but the method is applicable in full generality. \nFeaturing a clean and simple implementation, the method improves accuracy and performance. \nFor conditional expectation operators it offers the ability to use different estimators in the valuation and the differentiation. \nFor the indicator function, the method allows to use \"per-operator\"-differentiation of the indicator function, enabling an accurate treatment of each individual exercise boundary - which is not possible in a classic finite difference applied to the Bermudan valuation.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Backward Differentiation for American Monte-Carlo Algorithms - ADD for Conditional Expectations and Indicator Functions\",\"authors\":\"Christian P. Fries\",\"doi\":\"10.2139/ssrn.3000822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we derive a modified backward automatic differentiation (a.k.a. adjoint automatic differentiation, adjoint algorithmic differentiation) for algorithms containing conditional expectation operators and/or indicator functions. Bermudan option and xVA valuation are prototypical examples. We consider the Bermudan product valuation, but the method is applicable in full generality. \\nFeaturing a clean and simple implementation, the method improves accuracy and performance. \\nFor conditional expectation operators it offers the ability to use different estimators in the valuation and the differentiation. \\nFor the indicator function, the method allows to use \\\"per-operator\\\"-differentiation of the indicator function, enabling an accurate treatment of each individual exercise boundary - which is not possible in a classic finite difference applied to the Bermudan valuation.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3000822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们对包含条件期望算子和/或指示函数的算法导出了一种改进的向后自动微分(又称伴随自动微分,伴随算法微分)。百慕大期权和xVA估值就是典型的例子。我们考虑百慕大产品估值,但该方法完全适用于一般情况。该方法实现简洁,提高了准确性和性能。对于条件期望算子,它提供了在估值和微分中使用不同估计量的能力。对于指标函数,该方法允许使用“每个操作符”-指标函数的微分,从而能够准确处理每个单独的运动边界-这在应用于百慕大估值的经典有限差分中是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Backward Differentiation for American Monte-Carlo Algorithms - ADD for Conditional Expectations and Indicator Functions
In this note we derive a modified backward automatic differentiation (a.k.a. adjoint automatic differentiation, adjoint algorithmic differentiation) for algorithms containing conditional expectation operators and/or indicator functions. Bermudan option and xVA valuation are prototypical examples. We consider the Bermudan product valuation, but the method is applicable in full generality. Featuring a clean and simple implementation, the method improves accuracy and performance. For conditional expectation operators it offers the ability to use different estimators in the valuation and the differentiation. For the indicator function, the method allows to use "per-operator"-differentiation of the indicator function, enabling an accurate treatment of each individual exercise boundary - which is not possible in a classic finite difference applied to the Bermudan valuation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信