一类随机混合系统的精确近似抽象

J. Sproston
{"title":"一类随机混合系统的精确近似抽象","authors":"J. Sproston","doi":"10.14279/tuj.eceasst.70.977","DOIUrl":null,"url":null,"abstract":"A stochastic hybrid system contains a collection of interacting discrete and continuous components, subject to random behaviour. The formal verification of a stochastic hybrid system often comprises a method for the generation of a finite-state probabilistic system which either represents exactly the behaviour of the stochastic hybrid system, or which approximates conservatively its behaviour. We extend such abstraction-based formal verification of stochastic hybrid systems in two ways. Firstly, we generalise previous results by showing how bisimulation-based abstractions of non-probabilistic hybrid automata can be lifted to the setting of probabilistic hybrid automata, a subclass of stochastic hybrid systems in which probabilistic choices can be made with respect to finite, discrete alternatives only. Secondly, we consider the problem of obtaining approximate abstractions for discrete-time stochastic systems in which there are continuous probabilistic choices with regard to the slopes of certain system variables. We restrict our attention to the subclass of such systems in which the approximate abstraction of such a system, obtained using the previously developed techniques of Fraenzle et al., results in a probabilistic rectangular hybrid automaton, from which in turn a finite-state probabilistic system can be obtained. We illustrate this technique with an example, using the probabilistic model checking tool PRISM.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact and Approximate Abstraction for Classes of Stochastic Hybrid Systems\",\"authors\":\"J. Sproston\",\"doi\":\"10.14279/tuj.eceasst.70.977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stochastic hybrid system contains a collection of interacting discrete and continuous components, subject to random behaviour. The formal verification of a stochastic hybrid system often comprises a method for the generation of a finite-state probabilistic system which either represents exactly the behaviour of the stochastic hybrid system, or which approximates conservatively its behaviour. We extend such abstraction-based formal verification of stochastic hybrid systems in two ways. Firstly, we generalise previous results by showing how bisimulation-based abstractions of non-probabilistic hybrid automata can be lifted to the setting of probabilistic hybrid automata, a subclass of stochastic hybrid systems in which probabilistic choices can be made with respect to finite, discrete alternatives only. Secondly, we consider the problem of obtaining approximate abstractions for discrete-time stochastic systems in which there are continuous probabilistic choices with regard to the slopes of certain system variables. We restrict our attention to the subclass of such systems in which the approximate abstraction of such a system, obtained using the previously developed techniques of Fraenzle et al., results in a probabilistic rectangular hybrid automaton, from which in turn a finite-state probabilistic system can be obtained. We illustrate this technique with an example, using the probabilistic model checking tool PRISM.\",\"PeriodicalId\":115235,\"journal\":{\"name\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14279/tuj.eceasst.70.977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/tuj.eceasst.70.977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随机混合系统包含一系列相互作用的离散和连续组件,服从随机行为。随机混合系统的形式化验证通常包括生成有限状态概率系统的方法,该系统要么精确地表示随机混合系统的行为,要么保守地近似其行为。我们从两个方面扩展了这种基于抽象的随机混合系统的形式化验证。首先,我们通过展示如何将基于双仿真的非概率混合自动机抽象提升到概率混合自动机的设置来推广先前的结果,概率混合自动机是随机混合系统的一个子类,其中概率选择只能相对于有限的离散替代方案进行。其次,我们考虑离散时间随机系统的近似抽象问题,该系统对某些系统变量的斜率有连续的概率选择。我们将注意力限制在此类系统的子类上,其中使用Fraenzle等人先前开发的技术获得的此类系统的近似抽象导致概率矩形混合自动机,进而可以从中获得有限状态概率系统。我们用一个例子来说明这种技术,使用概率模型检查工具PRISM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact and Approximate Abstraction for Classes of Stochastic Hybrid Systems
A stochastic hybrid system contains a collection of interacting discrete and continuous components, subject to random behaviour. The formal verification of a stochastic hybrid system often comprises a method for the generation of a finite-state probabilistic system which either represents exactly the behaviour of the stochastic hybrid system, or which approximates conservatively its behaviour. We extend such abstraction-based formal verification of stochastic hybrid systems in two ways. Firstly, we generalise previous results by showing how bisimulation-based abstractions of non-probabilistic hybrid automata can be lifted to the setting of probabilistic hybrid automata, a subclass of stochastic hybrid systems in which probabilistic choices can be made with respect to finite, discrete alternatives only. Secondly, we consider the problem of obtaining approximate abstractions for discrete-time stochastic systems in which there are continuous probabilistic choices with regard to the slopes of certain system variables. We restrict our attention to the subclass of such systems in which the approximate abstraction of such a system, obtained using the previously developed techniques of Fraenzle et al., results in a probabilistic rectangular hybrid automaton, from which in turn a finite-state probabilistic system can be obtained. We illustrate this technique with an example, using the probabilistic model checking tool PRISM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信