对抗性机器学习

L. Reznik
{"title":"对抗性机器学习","authors":"L. Reznik","doi":"10.1002/9781119771579.ch6","DOIUrl":null,"url":null,"abstract":"The chapter introduces novel adversarial machine learning attacks and the taxonomy of its cases, where machine learning is used against AI‐based classifiers to make them fail. It investigates a possible data corruption and quality decrease influence on the classifier performance. The module proposes data restoration procedures and other measures to protect against adversarial attacks. Generative adversarial networks are introduced, and their use is discussed. Multiple algorithm examples and use cases are included.","PeriodicalId":318786,"journal":{"name":"Intelligent Security Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Machine Learning\",\"authors\":\"L. Reznik\",\"doi\":\"10.1002/9781119771579.ch6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter introduces novel adversarial machine learning attacks and the taxonomy of its cases, where machine learning is used against AI‐based classifiers to make them fail. It investigates a possible data corruption and quality decrease influence on the classifier performance. The module proposes data restoration procedures and other measures to protect against adversarial attacks. Generative adversarial networks are introduced, and their use is discussed. Multiple algorithm examples and use cases are included.\",\"PeriodicalId\":318786,\"journal\":{\"name\":\"Intelligent Security Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Security Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119771579.ch6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Security Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119771579.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章介绍了新的对抗性机器学习攻击及其案例的分类,其中机器学习用于针对基于AI的分类器,使其失败。研究了可能的数据损坏和质量下降对分类器性能的影响。该模块提出了数据恢复程序和其他防止对抗性攻击的措施。介绍了生成对抗网络,并讨论了其应用。包括多个算法示例和用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Machine Learning
The chapter introduces novel adversarial machine learning attacks and the taxonomy of its cases, where machine learning is used against AI‐based classifiers to make them fail. It investigates a possible data corruption and quality decrease influence on the classifier performance. The module proposes data restoration procedures and other measures to protect against adversarial attacks. Generative adversarial networks are introduced, and their use is discussed. Multiple algorithm examples and use cases are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信