有序汉明度量和有序对称信道

Woomyoung Park, A. Barg
{"title":"有序汉明度量和有序对称信道","authors":"Woomyoung Park, A. Barg","doi":"10.1109/ISIT.2011.6033968","DOIUrl":null,"url":null,"abstract":"The ordered Hamming metric is a generalization of the usual Hamming distance derived from a partial order on the set of coordinates. So far, coding theory in ordered spaces has primarily focused on combinatorial aspects. The main object of this paper is to develop the relation of the ordered Hamming space to the context of information transmission. Using the models in previous works of Rosenbloom and Tsfasman (1997) and Tavildar and Viswanath (2006) as a starting point, we define the ordered symmetric channel and the ordered erasure channel which are counterparts of the q-ary symmetric channel and the q-ary erasure channel, respectively. We establish a set of basic results for these channels as well as their relation to linear ordered codes.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"The ordered Hamming metric and ordered symmetric channels\",\"authors\":\"Woomyoung Park, A. Barg\",\"doi\":\"10.1109/ISIT.2011.6033968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ordered Hamming metric is a generalization of the usual Hamming distance derived from a partial order on the set of coordinates. So far, coding theory in ordered spaces has primarily focused on combinatorial aspects. The main object of this paper is to develop the relation of the ordered Hamming space to the context of information transmission. Using the models in previous works of Rosenbloom and Tsfasman (1997) and Tavildar and Viswanath (2006) as a starting point, we define the ordered symmetric channel and the ordered erasure channel which are counterparts of the q-ary symmetric channel and the q-ary erasure channel, respectively. We establish a set of basic results for these channels as well as their relation to linear ordered codes.\",\"PeriodicalId\":208375,\"journal\":{\"name\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Information Theory Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6033968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

有序汉明度规是对通常的汉明距离的推广,它是由一组坐标上的偏序导出的。到目前为止,有序空间中的编码理论主要集中在组合方面。本文的主要目的是发展有序汉明空间与信息传递语境的关系。以Rosenbloom和Tsfasman(1997)以及Tavildar和Viswanath(2006)之前的作品中的模型为起点,我们定义了有序对称通道和有序擦除通道,它们分别是q-ary对称通道和q-ary擦除通道的对应体。我们建立了这些信道的一组基本结果,以及它们与线性有序码的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The ordered Hamming metric and ordered symmetric channels
The ordered Hamming metric is a generalization of the usual Hamming distance derived from a partial order on the set of coordinates. So far, coding theory in ordered spaces has primarily focused on combinatorial aspects. The main object of this paper is to develop the relation of the ordered Hamming space to the context of information transmission. Using the models in previous works of Rosenbloom and Tsfasman (1997) and Tavildar and Viswanath (2006) as a starting point, we define the ordered symmetric channel and the ordered erasure channel which are counterparts of the q-ary symmetric channel and the q-ary erasure channel, respectively. We establish a set of basic results for these channels as well as their relation to linear ordered codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信