一种简单而有效的数据聚类算法

S. Vadapalli, Satyanarayana R. Valluri, K. Karlapalem
{"title":"一种简单而有效的数据聚类算法","authors":"S. Vadapalli, Satyanarayana R. Valluri, K. Karlapalem","doi":"10.1109/ICDM.2006.9","DOIUrl":null,"url":null,"abstract":"In this paper, we use a simple concept based on k-reverse nearest neighbor digraphs, to develop a framework RECORD for clustering and outlier detection. We developed three algorithms - (i) RECORD algorithm (requires one parameter), (ii) Agglomerative RECORD algorithm (no parameters required) and (iii) Stability-based RECORD algorithm (no parameters required). Our experimental results with published datasets, synthetic and real-life datasets show that RECORD not only handles noisy data, but also identifies the relevant clusters. Our results are as good as (if not better than) the results got from other algorithms.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"A Simple Yet Effective Data Clustering Algorithm\",\"authors\":\"S. Vadapalli, Satyanarayana R. Valluri, K. Karlapalem\",\"doi\":\"10.1109/ICDM.2006.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use a simple concept based on k-reverse nearest neighbor digraphs, to develop a framework RECORD for clustering and outlier detection. We developed three algorithms - (i) RECORD algorithm (requires one parameter), (ii) Agglomerative RECORD algorithm (no parameters required) and (iii) Stability-based RECORD algorithm (no parameters required). Our experimental results with published datasets, synthetic and real-life datasets show that RECORD not only handles noisy data, but also identifies the relevant clusters. Our results are as good as (if not better than) the results got from other algorithms.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在本文中,我们使用基于k-逆最近邻有向图的简单概念,开发了一个用于聚类和离群点检测的框架RECORD。我们开发了三种算法- (i) RECORD算法(需要一个参数),(ii)凝聚RECORD算法(不需要参数)和(iii)基于稳定性的RECORD算法(不需要参数)。我们对已发表数据集、合成数据集和实际数据集的实验结果表明,RECORD不仅可以处理噪声数据,还可以识别相关的聚类。我们的结果与其他算法得到的结果一样好(如果不是更好的话)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Yet Effective Data Clustering Algorithm
In this paper, we use a simple concept based on k-reverse nearest neighbor digraphs, to develop a framework RECORD for clustering and outlier detection. We developed three algorithms - (i) RECORD algorithm (requires one parameter), (ii) Agglomerative RECORD algorithm (no parameters required) and (iii) Stability-based RECORD algorithm (no parameters required). Our experimental results with published datasets, synthetic and real-life datasets show that RECORD not only handles noisy data, but also identifies the relevant clusters. Our results are as good as (if not better than) the results got from other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信