最糟糕的VAR情景:评论

Roger J. A. Laeven
{"title":"最糟糕的VAR情景:评论","authors":"Roger J. A. Laeven","doi":"10.2139/ssrn.887178","DOIUrl":null,"url":null,"abstract":"Theorem 15 of Embrechts et al. [Embrechts, Paul, Hoing, Andrea, Puccetti, Giovanni, 2005. Worst VaR scenarios. Insurance: Math. Econom. 37, 115-134] proves that comonotonicity gives rise to the on-average-most-adverse Value-at-Risk scenario for a function of dependent risks, when the marginal distributions are known but the dependence structure between the risks is unknown. This note extends this result to the case where, rather than no information, partial information is available on the dependence structure between the risks. A result of Kaas et al. [Kaas, Rob, Dhaene, Jan, Goovaerts, Marc J., 2000. Upper and lower bounds for sums of random variables. Insurance: Math. Econom. 23, 151-168] is also generalized for this purpose.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Worst VAR Scenarios: A Remark\",\"authors\":\"Roger J. A. Laeven\",\"doi\":\"10.2139/ssrn.887178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theorem 15 of Embrechts et al. [Embrechts, Paul, Hoing, Andrea, Puccetti, Giovanni, 2005. Worst VaR scenarios. Insurance: Math. Econom. 37, 115-134] proves that comonotonicity gives rise to the on-average-most-adverse Value-at-Risk scenario for a function of dependent risks, when the marginal distributions are known but the dependence structure between the risks is unknown. This note extends this result to the case where, rather than no information, partial information is available on the dependence structure between the risks. A result of Kaas et al. [Kaas, Rob, Dhaene, Jan, Goovaerts, Marc J., 2000. Upper and lower bounds for sums of random variables. Insurance: Math. Econom. 23, 151-168] is also generalized for this purpose.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.887178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.887178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Embrechts定理15 et . [Paul, Hoing, Andrea, Puccetti, Giovanni, 2005]。最糟糕的VaR情况。保险:数学。[经济学,37,115-134]证明,当边际分布已知,但风险之间的依赖结构未知时,对于依赖风险函数,共同性会产生平均最不利风险价值情景。本说明将此结果扩展到以下情况,即在风险之间的依赖结构上可以获得部分信息,而不是没有信息。Kaas的结果et al. [Kaas, Rob, Dhaene, Jan, Goovaerts, Marc J., 2000]。随机变量和的上界和下界。保险:数学。经济学。23,151-168]也为此目的进行了概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Worst VAR Scenarios: A Remark
Theorem 15 of Embrechts et al. [Embrechts, Paul, Hoing, Andrea, Puccetti, Giovanni, 2005. Worst VaR scenarios. Insurance: Math. Econom. 37, 115-134] proves that comonotonicity gives rise to the on-average-most-adverse Value-at-Risk scenario for a function of dependent risks, when the marginal distributions are known but the dependence structure between the risks is unknown. This note extends this result to the case where, rather than no information, partial information is available on the dependence structure between the risks. A result of Kaas et al. [Kaas, Rob, Dhaene, Jan, Goovaerts, Marc J., 2000. Upper and lower bounds for sums of random variables. Insurance: Math. Econom. 23, 151-168] is also generalized for this purpose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信