机器学习在Web网络分析中的应用

Meenakshi Sharma, A. Garg
{"title":"机器学习在Web网络分析中的应用","authors":"Meenakshi Sharma, A. Garg","doi":"10.4018/ijdai.2019070103","DOIUrl":null,"url":null,"abstract":"The World Wide Web is immensely rich in knowledge. The knowledge comes from both the content and distinctive characteristics of the web like its hyperlink structure. The problem comes in digging the relevant data from the web and giving the most appropriate decision to solve the given problem, which can be used for improving any business organisation. The effective solution of the problem depends on how efficiently and effectively the analysis of the web data is done. In analysing the data on web, not only relevant content analysis is essential but also the analysis of web structure is important. This article gives a brief introduction about the various terminologies and measures like centrality, Page Rank, and density used in the web networking analysis. This article will also give a brief introduction about the various supervised ML techniques such as classification, regression, and unsupervised machine learning techniques such as clustering, etc., which are very useful in analysing the web network so that user can make quick and effective decision making","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Insight of Machine Learning in Web Network Analysis\",\"authors\":\"Meenakshi Sharma, A. Garg\",\"doi\":\"10.4018/ijdai.2019070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The World Wide Web is immensely rich in knowledge. The knowledge comes from both the content and distinctive characteristics of the web like its hyperlink structure. The problem comes in digging the relevant data from the web and giving the most appropriate decision to solve the given problem, which can be used for improving any business organisation. The effective solution of the problem depends on how efficiently and effectively the analysis of the web data is done. In analysing the data on web, not only relevant content analysis is essential but also the analysis of web structure is important. This article gives a brief introduction about the various terminologies and measures like centrality, Page Rank, and density used in the web networking analysis. This article will also give a brief introduction about the various supervised ML techniques such as classification, regression, and unsupervised machine learning techniques such as clustering, etc., which are very useful in analysing the web network so that user can make quick and effective decision making\",\"PeriodicalId\":176325,\"journal\":{\"name\":\"International Journal of Distributed Artificial Intelligence\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Distributed Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdai.2019070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.2019070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

万维网上的知识极其丰富。这些知识既来自网络的内容,也来自其独特的特征,如超链接结构。问题在于从网络中挖掘相关数据,并给出最合适的决策来解决给定的问题,这可以用于改进任何商业组织。问题的有效解决取决于对网络数据分析的效率和效果。在对网络数据进行分析时,不仅要对相关内容进行分析,而且要对网络结构进行分析。本文简要介绍了web网络分析中使用的各种术语和度量,如中心性、页面排名和密度。本文还将简要介绍各种有监督的机器学习技术,如分类、回归和无监督的机器学习技术,如聚类等,这些技术在分析web网络时非常有用,以便用户能够做出快速有效的决策
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Insight of Machine Learning in Web Network Analysis
The World Wide Web is immensely rich in knowledge. The knowledge comes from both the content and distinctive characteristics of the web like its hyperlink structure. The problem comes in digging the relevant data from the web and giving the most appropriate decision to solve the given problem, which can be used for improving any business organisation. The effective solution of the problem depends on how efficiently and effectively the analysis of the web data is done. In analysing the data on web, not only relevant content analysis is essential but also the analysis of web structure is important. This article gives a brief introduction about the various terminologies and measures like centrality, Page Rank, and density used in the web networking analysis. This article will also give a brief introduction about the various supervised ML techniques such as classification, regression, and unsupervised machine learning techniques such as clustering, etc., which are very useful in analysing the web network so that user can make quick and effective decision making
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信