KECCAK硬件实现中的错误分析与检测

H. Mestiri, I. Barraj, Mohsen Machhout
{"title":"KECCAK硬件实现中的错误分析与检测","authors":"H. Mestiri, I. Barraj, Mohsen Machhout","doi":"10.1109/DTS52014.2021.9497889","DOIUrl":null,"url":null,"abstract":"The third family Secure Hash Algorithm cryptographic function, named KECCAK, is implemented in cryptographic circuits to assure high security level to any system which necessitates hashing as the generation of random numbers and the data integrity checking. One of the most efficient physical attacks against KECCAK hardware implementation is the fault attacks which can extract the secret data. Until today, a few KECCAK fault detection schemes against the fault attacks have been presented. In this paper, in order to provide a high level of security against fault attacks, we perform a detailed fault analysis to estimate the impact of fault attacks against the KECCAK implementation. We then propose an efficient error detection scheme based on the KECCAK architecture modification. For this reason, the round of KECCAK is divided into two half rounds and a KECCAK pipeline register is implemented between them. The proposed scheme is independent of the method the KECCAK is implemented. Thus, it can be applied to both the pipeline and iterative architectures.To evaluate the KECCAK detection scheme robustness against faults injection attacks, we perform fault injection attacks and we determined the fault detection capability; it is about 99.997%. We have modeled the KECCAK detection scheme using the VHDL hardware language and through hardware FPGA implementation, the FPGA results demonstrate that our scheme can efficiently secure the KECCAK implementation against fault attacks. It can be simply implemented with low complexity. In addition, the FPGA implementation performances prove the low slice area overhead and the high working frequency for the proposed KECCAK detection scheme.","PeriodicalId":158426,"journal":{"name":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis and Detection of Errors in KECCAK Hardware Implementation\",\"authors\":\"H. Mestiri, I. Barraj, Mohsen Machhout\",\"doi\":\"10.1109/DTS52014.2021.9497889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The third family Secure Hash Algorithm cryptographic function, named KECCAK, is implemented in cryptographic circuits to assure high security level to any system which necessitates hashing as the generation of random numbers and the data integrity checking. One of the most efficient physical attacks against KECCAK hardware implementation is the fault attacks which can extract the secret data. Until today, a few KECCAK fault detection schemes against the fault attacks have been presented. In this paper, in order to provide a high level of security against fault attacks, we perform a detailed fault analysis to estimate the impact of fault attacks against the KECCAK implementation. We then propose an efficient error detection scheme based on the KECCAK architecture modification. For this reason, the round of KECCAK is divided into two half rounds and a KECCAK pipeline register is implemented between them. The proposed scheme is independent of the method the KECCAK is implemented. Thus, it can be applied to both the pipeline and iterative architectures.To evaluate the KECCAK detection scheme robustness against faults injection attacks, we perform fault injection attacks and we determined the fault detection capability; it is about 99.997%. We have modeled the KECCAK detection scheme using the VHDL hardware language and through hardware FPGA implementation, the FPGA results demonstrate that our scheme can efficiently secure the KECCAK implementation against fault attacks. It can be simply implemented with low complexity. In addition, the FPGA implementation performances prove the low slice area overhead and the high working frequency for the proposed KECCAK detection scheme.\",\"PeriodicalId\":158426,\"journal\":{\"name\":\"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTS52014.2021.9497889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTS52014.2021.9497889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

第三类安全哈希算法加密功能KECCAK在加密电路中实现,以保证任何需要哈希的系统的高安全性,如随机数的生成和数据完整性检查。针对KECCAK硬件实现的最有效的物理攻击之一是故障攻击,它可以提取秘密数据。迄今为止,针对故障攻击已经提出了几种KECCAK故障检测方案。在本文中,为了提供针对故障攻击的高级别安全性,我们执行了详细的故障分析,以估计故障攻击对KECCAK实现的影响。然后,我们提出了一种基于KECCAK结构修改的有效的错误检测方案。因此,一轮KECCAK被分成两个半轮,并在它们之间实现一个KECCAK管道寄存器。该方案与KECCAK的实现方法无关。因此,它可以应用于管道和迭代架构。为了评估KECCAK检测方案对故障注入攻击的鲁棒性,我们执行了故障注入攻击并确定了故障检测能力;大约是99.997%。利用VHDL硬件语言对KECCAK检测方案进行了建模,并通过硬件FPGA实现,FPGA结果表明,该方案可以有效地保护KECCAK实现免受故障攻击。它可以以低复杂度简单地实现。此外,FPGA实现性能证明了所提出的KECCAK检测方案具有低片面积开销和高工作频率的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Detection of Errors in KECCAK Hardware Implementation
The third family Secure Hash Algorithm cryptographic function, named KECCAK, is implemented in cryptographic circuits to assure high security level to any system which necessitates hashing as the generation of random numbers and the data integrity checking. One of the most efficient physical attacks against KECCAK hardware implementation is the fault attacks which can extract the secret data. Until today, a few KECCAK fault detection schemes against the fault attacks have been presented. In this paper, in order to provide a high level of security against fault attacks, we perform a detailed fault analysis to estimate the impact of fault attacks against the KECCAK implementation. We then propose an efficient error detection scheme based on the KECCAK architecture modification. For this reason, the round of KECCAK is divided into two half rounds and a KECCAK pipeline register is implemented between them. The proposed scheme is independent of the method the KECCAK is implemented. Thus, it can be applied to both the pipeline and iterative architectures.To evaluate the KECCAK detection scheme robustness against faults injection attacks, we perform fault injection attacks and we determined the fault detection capability; it is about 99.997%. We have modeled the KECCAK detection scheme using the VHDL hardware language and through hardware FPGA implementation, the FPGA results demonstrate that our scheme can efficiently secure the KECCAK implementation against fault attacks. It can be simply implemented with low complexity. In addition, the FPGA implementation performances prove the low slice area overhead and the high working frequency for the proposed KECCAK detection scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信