机器学习在评估光子集成电路QoT损伤以降低系统裕度中的有效性

I. Khan, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, D. Richards, P. Mena, P. Bardella, A. Carena, V. Curri
{"title":"机器学习在评估光子集成电路QoT损伤以降低系统裕度中的有效性","authors":"I. Khan, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, D. Richards, P. Mena, P. Bardella, A. Carena, V. Curri","doi":"10.1109/IPC47351.2020.9252247","DOIUrl":null,"url":null,"abstract":"We propose machine learning technique for assessment of QoT impairments of integrated circuits. We consider margin reduction problem applied to a switching component. Overall results and data sets for machine-learning training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite.","PeriodicalId":435747,"journal":{"name":"2020 IEEE Photonics Conference (IPC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effectiveness of Machine Learning in Assessing QoT Impairments of Photonics Integrated Circuits to Reduce System Margin\",\"authors\":\"I. Khan, M. Chalony, E. Ghillino, M. U. Masood, J. Patel, D. Richards, P. Mena, P. Bardella, A. Carena, V. Curri\",\"doi\":\"10.1109/IPC47351.2020.9252247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose machine learning technique for assessment of QoT impairments of integrated circuits. We consider margin reduction problem applied to a switching component. Overall results and data sets for machine-learning training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite.\",\"PeriodicalId\":435747,\"journal\":{\"name\":\"2020 IEEE Photonics Conference (IPC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPC47351.2020.9252247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPC47351.2020.9252247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种评估集成电路QoT损伤的机器学习技术。研究了开关元件的裕度缩减问题。机器学习训练的总体结果和数据集是通过利用Synopsys光子设计套件的集成软件环境获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effectiveness of Machine Learning in Assessing QoT Impairments of Photonics Integrated Circuits to Reduce System Margin
We propose machine learning technique for assessment of QoT impairments of integrated circuits. We consider margin reduction problem applied to a switching component. Overall results and data sets for machine-learning training are obtained by leveraging the integrated software environment of the Synopsys Photonic Design Suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信