可视化流与四元数帧

A. Hanson, Hui Ma
{"title":"可视化流与四元数帧","authors":"A. Hanson, Hui Ma","doi":"10.1109/VISUAL.1994.346330","DOIUrl":null,"url":null,"abstract":"Flow fields, geodesics, and deformed volumes are natural sources of families of space curves that can be characterized by intrinsic geometric properties such as curvature, torsion, and Frenet frames. By expressing a curve's moving Frenet coordinate frame as an equivalent unit quaternion, we reduce the number of components that must be displayed from nine with six constraints to four with one constraint. We can then assign a color to each curve point by dotting its quaternion frame with a 4D light vector, or we can plot the frame values separately as a curve in the three-sphere. As examples, we examine twisted volumes used in topology to construct knots and tangles, a spherical volume deformation known as the Dirac string trick, and streamlines of 3D vector flow fields.<<ETX>>","PeriodicalId":273215,"journal":{"name":"Proceedings Visualization '94","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Visualizing flow with quaternion frames\",\"authors\":\"A. Hanson, Hui Ma\",\"doi\":\"10.1109/VISUAL.1994.346330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow fields, geodesics, and deformed volumes are natural sources of families of space curves that can be characterized by intrinsic geometric properties such as curvature, torsion, and Frenet frames. By expressing a curve's moving Frenet coordinate frame as an equivalent unit quaternion, we reduce the number of components that must be displayed from nine with six constraints to four with one constraint. We can then assign a color to each curve point by dotting its quaternion frame with a 4D light vector, or we can plot the frame values separately as a curve in the three-sphere. As examples, we examine twisted volumes used in topology to construct knots and tangles, a spherical volume deformation known as the Dirac string trick, and streamlines of 3D vector flow fields.<<ETX>>\",\"PeriodicalId\":273215,\"journal\":{\"name\":\"Proceedings Visualization '94\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Visualization '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.1994.346330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Visualization '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.1994.346330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

流场、测地线和变形体积是空间曲线族的自然来源,这些曲线族可以用曲率、扭转和弗莱内框架等固有几何特性来表征。通过将曲线的移动Frenet坐标系表示为等效的单位四元数,我们将必须显示的组件数量从具有六个约束的九个减少到具有一个约束的四个。然后,我们可以通过将其四元数帧与4D光向量点乘来为每个曲线点分配颜色,或者我们可以将帧值单独绘制为三球体中的曲线。作为例子,我们研究了拓扑中用于构建结和缠结的扭曲体积,称为狄拉克弦技巧的球形体积变形,以及三维矢量流场的流线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing flow with quaternion frames
Flow fields, geodesics, and deformed volumes are natural sources of families of space curves that can be characterized by intrinsic geometric properties such as curvature, torsion, and Frenet frames. By expressing a curve's moving Frenet coordinate frame as an equivalent unit quaternion, we reduce the number of components that must be displayed from nine with six constraints to four with one constraint. We can then assign a color to each curve point by dotting its quaternion frame with a 4D light vector, or we can plot the frame values separately as a curve in the three-sphere. As examples, we examine twisted volumes used in topology to construct knots and tangles, a spherical volume deformation known as the Dirac string trick, and streamlines of 3D vector flow fields.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信