利用部分傅立叶矩阵和块稀疏表示进行突发错误校正

N. Sriram, B. S. Adiga, K. Hari
{"title":"利用部分傅立叶矩阵和块稀疏表示进行突发错误校正","authors":"N. Sriram, B. S. Adiga, K. Hari","doi":"10.1109/NCC.2012.6176836","DOIUrl":null,"url":null,"abstract":"There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Burst error correction using partial fourier matrices and block sparse representation\",\"authors\":\"N. Sriram, B. S. Adiga, K. Hari\",\"doi\":\"10.1109/NCC.2012.6176836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.\",\"PeriodicalId\":178278,\"journal\":{\"name\":\"2012 National Conference on Communications (NCC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2012.6176836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

稀疏信号恢复与误差控制编码之间存在着密切的关系。已知突发误差本质上是块稀疏的。因此,本文尝试用分块稀疏信号恢复方法解决突发纠错问题。利用差分集上的结果构造了基于部分傅立叶的编码和解码矩阵。当与利用块稀疏性的重建算法结合使用时,这些结构提供了保证和有效的纠错。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burst error correction using partial fourier matrices and block sparse representation
There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信