具有控制信号延迟对象的调节器合成的多项式矩阵法

{"title":"具有控制信号延迟对象的调节器合成的多项式矩阵法","authors":"","doi":"10.17212/2782-2001-2023-1-7-24","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the synthesis of control systems for objects with a control signal delay by a polynomial matrix method, which is used to locate the poles and, if possible, zeros in the required position. The controller is calculated from the output, i.e. only from the measured values in the plant, which is an advantage over other modal direction synthesis methods where a state vector must be used. It is proposed to approximate the delay link with a Padé series with a limited number of terms, thus obtaining transfer functions of the first and second orders. The desired characteristic polynomial of the closed system is chosen so that it contains the denominators of the approximation transfer functions, which will keep their poles in the closed system. The polynomial synthesis method makes it possible to calculate multichannel controllers both for objects with multiple inputs and multiple outputs (multi input - multi output, MIMO) and for objects with one input and several outputs (single input - multi output, SIMO). The latter include a DC motor with independent excitation, where the armature current and rotor speed are outputs, and the control signal applied to the semiconductor converter is the input. In this work, the control signal is formed with a delay exceeding the time of the transient process of the engine, which significantly affects its dynamics. By applying the proposed approach, it was possible to synthesize a rotor speed control system that is resistant to changes in the delay time in a fairly wide range.","PeriodicalId":292298,"journal":{"name":"Analysis and data processing systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial matrix method for synthesizing regulators for objects with a control signal delay\",\"authors\":\"\",\"doi\":\"10.17212/2782-2001-2023-1-7-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the synthesis of control systems for objects with a control signal delay by a polynomial matrix method, which is used to locate the poles and, if possible, zeros in the required position. The controller is calculated from the output, i.e. only from the measured values in the plant, which is an advantage over other modal direction synthesis methods where a state vector must be used. It is proposed to approximate the delay link with a Padé series with a limited number of terms, thus obtaining transfer functions of the first and second orders. The desired characteristic polynomial of the closed system is chosen so that it contains the denominators of the approximation transfer functions, which will keep their poles in the closed system. The polynomial synthesis method makes it possible to calculate multichannel controllers both for objects with multiple inputs and multiple outputs (multi input - multi output, MIMO) and for objects with one input and several outputs (single input - multi output, SIMO). The latter include a DC motor with independent excitation, where the armature current and rotor speed are outputs, and the control signal applied to the semiconductor converter is the input. In this work, the control signal is formed with a delay exceeding the time of the transient process of the engine, which significantly affects its dynamics. By applying the proposed approach, it was possible to synthesize a rotor speed control system that is resistant to changes in the delay time in a fairly wide range.\",\"PeriodicalId\":292298,\"journal\":{\"name\":\"Analysis and data processing systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and data processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/2782-2001-2023-1-7-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and data processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/2782-2001-2023-1-7-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑用多项式矩阵方法综合具有控制信号延迟对象的控制系统,该方法用于定位极点,如果可能的话,在要求的位置上定位零点。控制器根据输出进行计算,即仅根据对象的测量值进行计算,这比必须使用状态向量的其他模态方向合成方法有优势。提出用有限项数的pad级数逼近时滞链,从而得到一阶和二阶传递函数。选择封闭系统所需的特征多项式,使其包含近似传递函数的分母,使其在封闭系统中保持极点。多项式综合方法使得计算具有多个输入和多个输出的对象(多输入-多输出,MIMO)和具有一个输入和多个输出的对象(单输入-多输出,SIMO)的多通道控制器成为可能。后者包括具有独立励磁的直流电动机,其中电枢电流和转子转速为输出,应用于半导体变换器的控制信号为输入。在这项工作中,控制信号形成的延迟超过了发动机瞬态过程的时间,这对发动机的动力学影响很大。通过应用所提出的方法,可以合成在相当宽的范围内抵抗延迟时间变化的转子转速控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial matrix method for synthesizing regulators for objects with a control signal delay
In this paper, we consider the synthesis of control systems for objects with a control signal delay by a polynomial matrix method, which is used to locate the poles and, if possible, zeros in the required position. The controller is calculated from the output, i.e. only from the measured values in the plant, which is an advantage over other modal direction synthesis methods where a state vector must be used. It is proposed to approximate the delay link with a Padé series with a limited number of terms, thus obtaining transfer functions of the first and second orders. The desired characteristic polynomial of the closed system is chosen so that it contains the denominators of the approximation transfer functions, which will keep their poles in the closed system. The polynomial synthesis method makes it possible to calculate multichannel controllers both for objects with multiple inputs and multiple outputs (multi input - multi output, MIMO) and for objects with one input and several outputs (single input - multi output, SIMO). The latter include a DC motor with independent excitation, where the armature current and rotor speed are outputs, and the control signal applied to the semiconductor converter is the input. In this work, the control signal is formed with a delay exceeding the time of the transient process of the engine, which significantly affects its dynamics. By applying the proposed approach, it was possible to synthesize a rotor speed control system that is resistant to changes in the delay time in a fairly wide range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信