基于核降维的人形运动低维特征提取

J. Morimoto, S. Hyon, C. Atkeson, G. Cheng
{"title":"基于核降维的人形运动低维特征提取","authors":"J. Morimoto, S. Hyon, C. Atkeson, G. Cheng","doi":"10.1109/ROBOT.2008.4543621","DOIUrl":null,"url":null,"abstract":"We propose using the kernel dimension reduction (KDR) to extract a low-dimensional feature space for humanoid locomotion tasks. Although humanoids have many degrees of freedom, task relevant feature spaces can be much smaller than the number of dimension of the original state space. We consider an application of the proposed approach to improve the locomotive performance of humanoid robots using an extracted low-dimensional state space. To improve the locomotive performance, we use a reinforcement learning (RL) framework. While RL is a useful non-linear optimizer, it is usually difficult to apply RL to real robotic systems - due to the large number of iterations required to acquire suitable policies. In this study, we use the extracted low-dimensional feature space for RL so that the learning system can improve task performance quickly. The kernel dimension reduction method allows us to extract the feature space even if the task relevant mapping is non-linear. This is an essential property to improve humanoid locomotive performance since stepping or walking dynamics involves highly nonlinear dynamics. We show that we can improve stepping and walking policies by using a RL method on an extracted feature space by using KDR.","PeriodicalId":351230,"journal":{"name":"2008 IEEE International Conference on Robotics and Automation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction\",\"authors\":\"J. Morimoto, S. Hyon, C. Atkeson, G. Cheng\",\"doi\":\"10.1109/ROBOT.2008.4543621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose using the kernel dimension reduction (KDR) to extract a low-dimensional feature space for humanoid locomotion tasks. Although humanoids have many degrees of freedom, task relevant feature spaces can be much smaller than the number of dimension of the original state space. We consider an application of the proposed approach to improve the locomotive performance of humanoid robots using an extracted low-dimensional state space. To improve the locomotive performance, we use a reinforcement learning (RL) framework. While RL is a useful non-linear optimizer, it is usually difficult to apply RL to real robotic systems - due to the large number of iterations required to acquire suitable policies. In this study, we use the extracted low-dimensional feature space for RL so that the learning system can improve task performance quickly. The kernel dimension reduction method allows us to extract the feature space even if the task relevant mapping is non-linear. This is an essential property to improve humanoid locomotive performance since stepping or walking dynamics involves highly nonlinear dynamics. We show that we can improve stepping and walking policies by using a RL method on an extracted feature space by using KDR.\",\"PeriodicalId\":351230,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Automation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2008.4543621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2008.4543621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出利用核降维(KDR)方法提取类人运动任务的低维特征空间。虽然类人机器人具有许多自由度,但与任务相关的特征空间可以比原始状态空间的维数小得多。我们考虑将所提出的方法应用于利用提取的低维状态空间来改善人形机器人的机车性能。为了提高机车性能,我们使用了强化学习(RL)框架。虽然强化学习是一个有用的非线性优化器,但通常很难将强化学习应用于真实的机器人系统,因为需要大量的迭代来获取合适的策略。在本研究中,我们将提取的低维特征空间用于强化学习,使学习系统能够快速提高任务性能。核降维方法允许我们在任务相关映射是非线性的情况下提取特征空间。由于步进或行走动力学涉及高度非线性动力学,这是改善人形机车性能的基本特性。我们证明了我们可以通过使用KDR在提取的特征空间上使用RL方法来改进步进和行走策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-dimensional feature extraction for humanoid locomotion using kernel dimension reduction
We propose using the kernel dimension reduction (KDR) to extract a low-dimensional feature space for humanoid locomotion tasks. Although humanoids have many degrees of freedom, task relevant feature spaces can be much smaller than the number of dimension of the original state space. We consider an application of the proposed approach to improve the locomotive performance of humanoid robots using an extracted low-dimensional state space. To improve the locomotive performance, we use a reinforcement learning (RL) framework. While RL is a useful non-linear optimizer, it is usually difficult to apply RL to real robotic systems - due to the large number of iterations required to acquire suitable policies. In this study, we use the extracted low-dimensional feature space for RL so that the learning system can improve task performance quickly. The kernel dimension reduction method allows us to extract the feature space even if the task relevant mapping is non-linear. This is an essential property to improve humanoid locomotive performance since stepping or walking dynamics involves highly nonlinear dynamics. We show that we can improve stepping and walking policies by using a RL method on an extracted feature space by using KDR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信