云环境下小型高性能计算应用的干扰感知虚拟机布局策略

Maicon Melo Alves, Lúcia M. A. Drummond
{"title":"云环境下小型高性能计算应用的干扰感知虚拟机布局策略","authors":"Maicon Melo Alves, Lúcia M. A. Drummond","doi":"10.5753/wscad_estendido.2019.8707","DOIUrl":null,"url":null,"abstract":"The cross-interference problem may occur when applications are executed in virtual machines placed in a same physical machine. Although many previous works have proposed several different strategies for Virtual Machine Placement, neither of them have employed a suitable method for predicting cross-interference nor have considered the minimization of the number of used physical machines at the same time. In this thesis, we define the Interference-aware Virtual Machine Placement Problem for small-scale HPC applications in Clouds (IVMPP) that tackles both problems by minimizing, at the same time, the cross-interference of small-scale HPC applications, that can share physical machines, and the number of physical machines used to allocate them. We propose a mathematical formulation and a strategy based on the Iterated Local Search framework to solve this problem. Moreover, we also propose a quantitative and multivariate model to predict interference for a set of applications allocated to the same physical machine. Experiments executed in a real scenario, by using applications from the oil and gas industry and the HPCC benchmark suite, showed that our method outperforms several heuristics from the related literature in terms of interference, while using the same number of physical machines.","PeriodicalId":280012,"journal":{"name":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Interference-aware Virtual Machine Placement Strategy for Small-scale HPC Applications in Clouds\",\"authors\":\"Maicon Melo Alves, Lúcia M. A. Drummond\",\"doi\":\"10.5753/wscad_estendido.2019.8707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cross-interference problem may occur when applications are executed in virtual machines placed in a same physical machine. Although many previous works have proposed several different strategies for Virtual Machine Placement, neither of them have employed a suitable method for predicting cross-interference nor have considered the minimization of the number of used physical machines at the same time. In this thesis, we define the Interference-aware Virtual Machine Placement Problem for small-scale HPC applications in Clouds (IVMPP) that tackles both problems by minimizing, at the same time, the cross-interference of small-scale HPC applications, that can share physical machines, and the number of physical machines used to allocate them. We propose a mathematical formulation and a strategy based on the Iterated Local Search framework to solve this problem. Moreover, we also propose a quantitative and multivariate model to predict interference for a set of applications allocated to the same physical machine. Experiments executed in a real scenario, by using applications from the oil and gas industry and the HPCC benchmark suite, showed that our method outperforms several heuristics from the related literature in terms of interference, while using the same number of physical machines.\",\"PeriodicalId\":280012,\"journal\":{\"name\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad_estendido.2019.8707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad_estendido.2019.8707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当应用程序在放置在同一物理机中的虚拟机中执行时,可能会出现交叉干扰问题。尽管许多先前的工作已经提出了几种不同的虚拟机放置策略,但它们都没有采用合适的方法来预测交叉干扰,也没有考虑同时使用的物理机数量的最小化。在本文中,我们定义了云中的小规模HPC应用程序的干扰感知虚拟机放置问题(IVMPP),该问题通过最小化小规模HPC应用程序(可以共享物理机器)的交叉干扰以及用于分配它们的物理机器数量来解决这两个问题。我们提出了一个数学公式和基于迭代局部搜索框架的策略来解决这个问题。此外,我们还提出了一个定量和多元模型来预测分配给同一物理机器的一组应用程序的干扰。在真实场景中,通过使用来自石油和天然气行业的应用程序和HPCC基准套件进行的实验表明,在使用相同数量的物理机器的情况下,我们的方法在干扰方面优于相关文献中的几种启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Interference-aware Virtual Machine Placement Strategy for Small-scale HPC Applications in Clouds
The cross-interference problem may occur when applications are executed in virtual machines placed in a same physical machine. Although many previous works have proposed several different strategies for Virtual Machine Placement, neither of them have employed a suitable method for predicting cross-interference nor have considered the minimization of the number of used physical machines at the same time. In this thesis, we define the Interference-aware Virtual Machine Placement Problem for small-scale HPC applications in Clouds (IVMPP) that tackles both problems by minimizing, at the same time, the cross-interference of small-scale HPC applications, that can share physical machines, and the number of physical machines used to allocate them. We propose a mathematical formulation and a strategy based on the Iterated Local Search framework to solve this problem. Moreover, we also propose a quantitative and multivariate model to predict interference for a set of applications allocated to the same physical machine. Experiments executed in a real scenario, by using applications from the oil and gas industry and the HPCC benchmark suite, showed that our method outperforms several heuristics from the related literature in terms of interference, while using the same number of physical machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信