贝叶斯结构VAR模型:脉冲响应先验信念的新方法

Martin Bruns, Michele Piffer
{"title":"贝叶斯结构VAR模型:脉冲响应先验信念的新方法","authors":"Martin Bruns, Michele Piffer","doi":"10.2139/ssrn.3366913","DOIUrl":null,"url":null,"abstract":"Structural VAR models are frequently identified using sign restrictions on impulse responses. Moving beyond the popular but restrictive Normal-inverse-Wishart-Uniform prior, we develop a methodology that can handle almost any prior distribution on contemporaneous responses. We then propose a new sampler that explores the posterior just as efficiently as done by the existing algorithm for the Normal-inverse-Wishart-Uniform case. We use this exible and tractable framework to combine sign restrictions with information on the volatility of the data, giving less prior mass to impulse effects that are inconsistent with the data from a training sample. This approach sharpens posterior bands and makes sign restrictions more informative. We apply the methodology to the oil market and show that oil supply shocks have a non-negligible effect on oil price dynamics.","PeriodicalId":127865,"journal":{"name":"Political Economy: Budget","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bayesian Structural VAR Models: A New Approach for Prior Beliefs on Impulse Responses\",\"authors\":\"Martin Bruns, Michele Piffer\",\"doi\":\"10.2139/ssrn.3366913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural VAR models are frequently identified using sign restrictions on impulse responses. Moving beyond the popular but restrictive Normal-inverse-Wishart-Uniform prior, we develop a methodology that can handle almost any prior distribution on contemporaneous responses. We then propose a new sampler that explores the posterior just as efficiently as done by the existing algorithm for the Normal-inverse-Wishart-Uniform case. We use this exible and tractable framework to combine sign restrictions with information on the volatility of the data, giving less prior mass to impulse effects that are inconsistent with the data from a training sample. This approach sharpens posterior bands and makes sign restrictions more informative. We apply the methodology to the oil market and show that oil supply shocks have a non-negligible effect on oil price dynamics.\",\"PeriodicalId\":127865,\"journal\":{\"name\":\"Political Economy: Budget\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Economy: Budget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3366913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Economy: Budget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3366913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

结构VAR模型通常使用脉冲响应的符号限制来识别。超越了流行但限制性的正态-逆- wishart -均匀先验,我们开发了一种方法,可以处理几乎任何关于同期响应的先验分布。然后,我们提出了一种新的采样器,它可以像现有的正态-逆- wishart -均匀情况下的算法一样有效地探索后验。我们使用这个灵活且易于处理的框架将符号限制与数据的波动性信息结合起来,为与训练样本数据不一致的脉冲效应提供较少的先验质量。这种方法可以锐化后束,使标志限制更具信息性。我们将该方法应用于石油市场,并表明石油供应冲击对石油价格动态具有不可忽视的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Structural VAR Models: A New Approach for Prior Beliefs on Impulse Responses
Structural VAR models are frequently identified using sign restrictions on impulse responses. Moving beyond the popular but restrictive Normal-inverse-Wishart-Uniform prior, we develop a methodology that can handle almost any prior distribution on contemporaneous responses. We then propose a new sampler that explores the posterior just as efficiently as done by the existing algorithm for the Normal-inverse-Wishart-Uniform case. We use this exible and tractable framework to combine sign restrictions with information on the volatility of the data, giving less prior mass to impulse effects that are inconsistent with the data from a training sample. This approach sharpens posterior bands and makes sign restrictions more informative. We apply the methodology to the oil market and show that oil supply shocks have a non-negligible effect on oil price dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信