{"title":"悬链线问题:历史、解决方案及应用","authors":"L. Lima, Sandra Miranda","doi":"10.5752/P.2674-9416.2021V4N1P37-51","DOIUrl":null,"url":null,"abstract":"O objetivo deste artigo é apresentar uma história sobre o Problema da Catenária, com sua solução e algumas aplicações. Foi abordada a etimologia da palavra catenária, o enunciado do problema foi proposto por Jakob Bernoulli, os matemáticos que contribuíram para sua solução, como Galileu, Huygens, Leibniz e Johann Bernoulli. É evidenciada a construção matemática da parábola e da catenária e uma corroboração desta distinção por meio de gráficos plotados no GeoGebra, seguida aplicações na engenharia e arquitetura. Nesse sentido, elucida-se a possibilidade de levar, para sala de aula, curiosidades deste tipo ao trabalhar com Função Quadrática para instigar os alunos sobre a existência de outras funções como as exponenciais e a possibilidade para desdobramento de pesquisas futuras com outros problemas ou situações presentes ao longo História da Matemática.","PeriodicalId":177696,"journal":{"name":"Matemática e Ciência: construção, conhecimento e criatividade","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Problema da catenária: história, solução e aplicações\",\"authors\":\"L. Lima, Sandra Miranda\",\"doi\":\"10.5752/P.2674-9416.2021V4N1P37-51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O objetivo deste artigo é apresentar uma história sobre o Problema da Catenária, com sua solução e algumas aplicações. Foi abordada a etimologia da palavra catenária, o enunciado do problema foi proposto por Jakob Bernoulli, os matemáticos que contribuíram para sua solução, como Galileu, Huygens, Leibniz e Johann Bernoulli. É evidenciada a construção matemática da parábola e da catenária e uma corroboração desta distinção por meio de gráficos plotados no GeoGebra, seguida aplicações na engenharia e arquitetura. Nesse sentido, elucida-se a possibilidade de levar, para sala de aula, curiosidades deste tipo ao trabalhar com Função Quadrática para instigar os alunos sobre a existência de outras funções como as exponenciais e a possibilidade para desdobramento de pesquisas futuras com outros problemas ou situações presentes ao longo História da Matemática.\",\"PeriodicalId\":177696,\"journal\":{\"name\":\"Matemática e Ciência: construção, conhecimento e criatividade\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matemática e Ciência: construção, conhecimento e criatividade\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5752/P.2674-9416.2021V4N1P37-51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matemática e Ciência: construção, conhecimento e criatividade","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5752/P.2674-9416.2021V4N1P37-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Problema da catenária: história, solução e aplicações
O objetivo deste artigo é apresentar uma história sobre o Problema da Catenária, com sua solução e algumas aplicações. Foi abordada a etimologia da palavra catenária, o enunciado do problema foi proposto por Jakob Bernoulli, os matemáticos que contribuíram para sua solução, como Galileu, Huygens, Leibniz e Johann Bernoulli. É evidenciada a construção matemática da parábola e da catenária e uma corroboração desta distinção por meio de gráficos plotados no GeoGebra, seguida aplicações na engenharia e arquitetura. Nesse sentido, elucida-se a possibilidade de levar, para sala de aula, curiosidades deste tipo ao trabalhar com Função Quadrática para instigar os alunos sobre a existência de outras funções como as exponenciais e a possibilidade para desdobramento de pesquisas futuras com outros problemas ou situações presentes ao longo História da Matemática.