基于GMMs扩展的工业燃气轮机新颖性检测

Yu Zhang, C. Bingham, M. Gallimore, Darren Cox
{"title":"基于GMMs扩展的工业燃气轮机新颖性检测","authors":"Yu Zhang, C. Bingham, M. Gallimore, Darren Cox","doi":"10.1109/CIVEMSA.2015.7158591","DOIUrl":null,"url":null,"abstract":"The paper applies the application of Gaussian mixture models (GMMs) for operational pattern discrimination and novelty/fault detection for an industrial gas turbine (IGT). Variational Bayesian GMM (VBGMM) is used to automatically cluster operational data into steady-state and transient responses, where extraction of steady-state data is an important preprocessing scenario for fault detection. Important features are extracted from steady-state data, which are then fingerprinted to show any anomalies of patterns which may be due to machine faults. Field data measurements from vibration sensors are used to show that the extensions of GMMs provide a useful tool for machine condition monitoring, fault detection and diagnostics in the field. Through the use of experimental trials on IGTs, it is shown that GMM is particularly useful for the detection of emerging faults especially where there is a lack of knowledge of machine fault patterns.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Novelty detection based on extensions of GMMs for industrial gas turbines\",\"authors\":\"Yu Zhang, C. Bingham, M. Gallimore, Darren Cox\",\"doi\":\"10.1109/CIVEMSA.2015.7158591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper applies the application of Gaussian mixture models (GMMs) for operational pattern discrimination and novelty/fault detection for an industrial gas turbine (IGT). Variational Bayesian GMM (VBGMM) is used to automatically cluster operational data into steady-state and transient responses, where extraction of steady-state data is an important preprocessing scenario for fault detection. Important features are extracted from steady-state data, which are then fingerprinted to show any anomalies of patterns which may be due to machine faults. Field data measurements from vibration sensors are used to show that the extensions of GMMs provide a useful tool for machine condition monitoring, fault detection and diagnostics in the field. Through the use of experimental trials on IGTs, it is shown that GMM is particularly useful for the detection of emerging faults especially where there is a lack of knowledge of machine fault patterns.\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文将高斯混合模型(GMMs)应用于工业燃气轮机(IGT)的运行模式判别和新颖性/故障检测。变分贝叶斯GMM (VBGMM)用于将运行数据自动聚类为稳态和暂态响应,其中稳态数据的提取是故障检测的重要预处理场景。从稳态数据中提取重要特征,然后对其进行指纹识别,以显示可能由机器故障引起的模式异常。振动传感器的现场测量数据表明,GMMs的扩展为现场机器状态监测、故障检测和诊断提供了有用的工具。通过使用igt的实验试验,表明GMM对于检测新出现的故障特别有用,特别是在缺乏机器故障模式知识的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novelty detection based on extensions of GMMs for industrial gas turbines
The paper applies the application of Gaussian mixture models (GMMs) for operational pattern discrimination and novelty/fault detection for an industrial gas turbine (IGT). Variational Bayesian GMM (VBGMM) is used to automatically cluster operational data into steady-state and transient responses, where extraction of steady-state data is an important preprocessing scenario for fault detection. Important features are extracted from steady-state data, which are then fingerprinted to show any anomalies of patterns which may be due to machine faults. Field data measurements from vibration sensors are used to show that the extensions of GMMs provide a useful tool for machine condition monitoring, fault detection and diagnostics in the field. Through the use of experimental trials on IGTs, it is shown that GMM is particularly useful for the detection of emerging faults especially where there is a lack of knowledge of machine fault patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信