关于段和折线的k-means

Sergio Cabello, P. Giannopoulos
{"title":"关于段和折线的k-means","authors":"Sergio Cabello, P. Giannopoulos","doi":"10.48550/arXiv.2305.10922","DOIUrl":null,"url":null,"abstract":"We study the problem of $k$-means clustering in the space of straight-line segments in $\\mathbb{R}^{2}$ under the Hausdorff distance. For this problem, we give a $(1+\\epsilon)$-approximation algorithm that, for an input of $n$ segments, for any fixed $k$, and with constant success probability, runs in time $O(n+ \\epsilon^{-O(k)} + \\epsilon^{-O(k)}\\cdot \\log^{O(k)} (\\epsilon^{-1}))$. The algorithm has two main ingredients. Firstly, we express the $k$-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron~\\cite{Vigneron14} to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg~\\cite{Feldman11, Feldman2020}. Our results can be extended to polylines of constant complexity with a running time of $O(n+ \\epsilon^{-O(k)})$.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On k-means for segments and polylines\",\"authors\":\"Sergio Cabello, P. Giannopoulos\",\"doi\":\"10.48550/arXiv.2305.10922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of $k$-means clustering in the space of straight-line segments in $\\\\mathbb{R}^{2}$ under the Hausdorff distance. For this problem, we give a $(1+\\\\epsilon)$-approximation algorithm that, for an input of $n$ segments, for any fixed $k$, and with constant success probability, runs in time $O(n+ \\\\epsilon^{-O(k)} + \\\\epsilon^{-O(k)}\\\\cdot \\\\log^{O(k)} (\\\\epsilon^{-1}))$. The algorithm has two main ingredients. Firstly, we express the $k$-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron~\\\\cite{Vigneron14} to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg~\\\\cite{Feldman11, Feldman2020}. Our results can be extended to polylines of constant complexity with a running time of $O(n+ \\\\epsilon^{-O(k)})$.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.10922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.10922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了在Hausdorff距离下$\mathbb{R}^{2}$直线段空间中$k$ -均值聚类问题。对于这个问题,我们给出了一个$(1+\epsilon)$ -近似算法,对于$n$段的输入,对于任意固定的$k$,在恒定的成功概率下,运行时间为$O(n+ \epsilon^{-O(k)} + \epsilon^{-O(k)}\cdot \log^{O(k)} (\epsilon^{-1}))$。该算法有两个主要成分。首先,我们将度量空间中的$k$ -means目标表示为代数函数的和,并使用Vigneron \cite{Vigneron14}的优化技术来近似其最小值。其次,我们通过使用Feldman和Langberg的基于灵敏度的采样框架计算小尺寸的核心集来减小输入大小\cite{Feldman11, Feldman2020}。我们的结果可以扩展到具有恒定复杂性的折线,运行时间为$O(n+ \epsilon^{-O(k)})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On k-means for segments and polylines
We study the problem of $k$-means clustering in the space of straight-line segments in $\mathbb{R}^{2}$ under the Hausdorff distance. For this problem, we give a $(1+\epsilon)$-approximation algorithm that, for an input of $n$ segments, for any fixed $k$, and with constant success probability, runs in time $O(n+ \epsilon^{-O(k)} + \epsilon^{-O(k)}\cdot \log^{O(k)} (\epsilon^{-1}))$. The algorithm has two main ingredients. Firstly, we express the $k$-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron~\cite{Vigneron14} to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg~\cite{Feldman11, Feldman2020}. Our results can be extended to polylines of constant complexity with a running time of $O(n+ \epsilon^{-O(k)})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信