使用API调用可视化和卷积神经网络的恶意软件检测

Jaime Pizarro Barona, Joseph Avila Alvarez, Carlos Jiménez Farfán, Joangie Márquez Aguilar, Rafael I. Bonilla
{"title":"使用API调用可视化和卷积神经网络的恶意软件检测","authors":"Jaime Pizarro Barona, Joseph Avila Alvarez, Carlos Jiménez Farfán, Joangie Márquez Aguilar, Rafael I. Bonilla","doi":"10.1109/CCGridW59191.2023.00037","DOIUrl":null,"url":null,"abstract":"This research explores and analyzes different API Calls sequence transformation methods into images to train deep learning models and determine which combination of these methods and models performs better. We generated images from API Calls sequences using Simhash and FreqSeq. The results were compared by training two well-known Convolutional Network architectures (ResNet50v2 and MobileNetv2). This work presents our experience running these experiments highlighting the results obtained and the challenges we faced.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malware Detection using API Calls Visualisations and Convolutional Neural Networks\",\"authors\":\"Jaime Pizarro Barona, Joseph Avila Alvarez, Carlos Jiménez Farfán, Joangie Márquez Aguilar, Rafael I. Bonilla\",\"doi\":\"10.1109/CCGridW59191.2023.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research explores and analyzes different API Calls sequence transformation methods into images to train deep learning models and determine which combination of these methods and models performs better. We generated images from API Calls sequences using Simhash and FreqSeq. The results were compared by training two well-known Convolutional Network architectures (ResNet50v2 and MobileNetv2). This work presents our experience running these experiments highlighting the results obtained and the challenges we faced.\",\"PeriodicalId\":341115,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGridW59191.2023.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探索和分析了不同的API调用序列转换方法到图像中,以训练深度学习模型,并确定这些方法和模型的哪种组合效果更好。我们使用Simhash和FreqSeq从API调用序列生成图像。通过训练两种著名的卷积网络架构(ResNet50v2和MobileNetv2)对结果进行比较。这项工作介绍了我们运行这些实验的经验,突出了所获得的结果和我们面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware Detection using API Calls Visualisations and Convolutional Neural Networks
This research explores and analyzes different API Calls sequence transformation methods into images to train deep learning models and determine which combination of these methods and models performs better. We generated images from API Calls sequences using Simhash and FreqSeq. The results were compared by training two well-known Convolutional Network architectures (ResNet50v2 and MobileNetv2). This work presents our experience running these experiments highlighting the results obtained and the challenges we faced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信