{"title":"简短公告:事务性数据结构库","authors":"A. Spiegelman, Guy Golan-Gueta, I. Keidar","doi":"10.1145/2935764.2935805","DOIUrl":null,"url":null,"abstract":"We introduce transactions into libraries of concurrent data structures; such transactions can be used to ensure atomicity of sequences of data structure operations. By restricting transactional access to a well-defined set of data structure operations, we strike a balance between the ease-of-programming of transactions and the efficiency of custom-tailored data structures. We exemplify this concept by designing and implementing a library supporting transactions on any number of maps, sets (implemented as skiplists), and queues. Our library offers efficient and scalable transactions, which are an order of magnitude faster than state-of-the-art transactional memory toolkits. Moreover, our approach treats stand-alone data structure operations (like put and enqueue) as first class citizens, and allows them to execute with virtually no overhead, at the speed of the original data structure library.","PeriodicalId":346939,"journal":{"name":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief Announcement: Transactional Data Structure Libraries\",\"authors\":\"A. Spiegelman, Guy Golan-Gueta, I. Keidar\",\"doi\":\"10.1145/2935764.2935805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce transactions into libraries of concurrent data structures; such transactions can be used to ensure atomicity of sequences of data structure operations. By restricting transactional access to a well-defined set of data structure operations, we strike a balance between the ease-of-programming of transactions and the efficiency of custom-tailored data structures. We exemplify this concept by designing and implementing a library supporting transactions on any number of maps, sets (implemented as skiplists), and queues. Our library offers efficient and scalable transactions, which are an order of magnitude faster than state-of-the-art transactional memory toolkits. Moreover, our approach treats stand-alone data structure operations (like put and enqueue) as first class citizens, and allows them to execute with virtually no overhead, at the speed of the original data structure library.\",\"PeriodicalId\":346939,\"journal\":{\"name\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2935764.2935805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2935764.2935805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brief Announcement: Transactional Data Structure Libraries
We introduce transactions into libraries of concurrent data structures; such transactions can be used to ensure atomicity of sequences of data structure operations. By restricting transactional access to a well-defined set of data structure operations, we strike a balance between the ease-of-programming of transactions and the efficiency of custom-tailored data structures. We exemplify this concept by designing and implementing a library supporting transactions on any number of maps, sets (implemented as skiplists), and queues. Our library offers efficient and scalable transactions, which are an order of magnitude faster than state-of-the-art transactional memory toolkits. Moreover, our approach treats stand-alone data structure operations (like put and enqueue) as first class citizens, and allows them to execute with virtually no overhead, at the speed of the original data structure library.