表示索引生成函数的变量数约简方法:s-Min法

Tsutomu Sasao
{"title":"表示索引生成函数的变量数约简方法:s-Min法","authors":"Tsutomu Sasao","doi":"10.1109/ISMVL.2015.40","DOIUrl":null,"url":null,"abstract":"Most n-variable incompletely specified index generation functions with weight k can be represented by fewer variables than n when k ≪ 2n. Furthermore, with a linear decomposition, the function can be represented by still fewer variables. In this paper, we propose an iterative improvement method, called the s-Min method, to reduce the number of variables.","PeriodicalId":118417,"journal":{"name":"2015 IEEE International Symposium on Multiple-Valued Logic","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Reduction Method for the Number of Variables to Represent Index Generation Functions: s-Min Method\",\"authors\":\"Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL.2015.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most n-variable incompletely specified index generation functions with weight k can be represented by fewer variables than n when k ≪ 2n. Furthermore, with a linear decomposition, the function can be represented by still fewer variables. In this paper, we propose an iterative improvement method, called the s-Min method, to reduce the number of variables.\",\"PeriodicalId\":118417,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2015.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2015.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

当k≪2n时,大多数权重为k的n变量不完全指定指数生成函数可以用比n更少的变量表示。此外,通过线性分解,函数可以用更少的变量来表示。在本文中,我们提出了一种迭代改进方法,称为s-Min方法,以减少变量的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Reduction Method for the Number of Variables to Represent Index Generation Functions: s-Min Method
Most n-variable incompletely specified index generation functions with weight k can be represented by fewer variables than n when k ≪ 2n. Furthermore, with a linear decomposition, the function can be represented by still fewer variables. In this paper, we propose an iterative improvement method, called the s-Min method, to reduce the number of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信