高光谱图像压缩适用于光谱分析应用

Kazuma Shinoda, Y. Kosugi, Y. Murakami, Masahiro Yamaguchi, N. Ohyama
{"title":"高光谱图像压缩适用于光谱分析应用","authors":"Kazuma Shinoda, Y. Kosugi, Y. Murakami, Masahiro Yamaguchi, N. Ohyama","doi":"10.1109/PCS.2010.5702582","DOIUrl":null,"url":null,"abstract":"In the compression technique of hyperspectral image (HSI), PSNR of the reconstructed image is usually used for evaluating the performance of the coding results. For the spectral analysis applications of HSI, it is also important to consider the error in the result of spectral analysis. In the vegetation analysis, for example, the distortion of the vegetation index should be considered in addition to the distortion in the spectral data. This paper presents a HSI compression considering the error of both vegetation index and spectral data. The proposed method separates a hyperspectral data into spectral data for vegetation index and residual data. Both of the data are encoded by using a seamless coding individually. By holding the spectral channels required for vegetation index in the head of the code-stream, a precise vegetation analysis can be done in a low bit rate. Additionally, by decoding the residual data, the spectral data can be reconstructed in low distortion.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image compression suitable for spectral analysis application\",\"authors\":\"Kazuma Shinoda, Y. Kosugi, Y. Murakami, Masahiro Yamaguchi, N. Ohyama\",\"doi\":\"10.1109/PCS.2010.5702582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the compression technique of hyperspectral image (HSI), PSNR of the reconstructed image is usually used for evaluating the performance of the coding results. For the spectral analysis applications of HSI, it is also important to consider the error in the result of spectral analysis. In the vegetation analysis, for example, the distortion of the vegetation index should be considered in addition to the distortion in the spectral data. This paper presents a HSI compression considering the error of both vegetation index and spectral data. The proposed method separates a hyperspectral data into spectral data for vegetation index and residual data. Both of the data are encoded by using a seamless coding individually. By holding the spectral channels required for vegetation index in the head of the code-stream, a precise vegetation analysis can be done in a low bit rate. Additionally, by decoding the residual data, the spectral data can be reconstructed in low distortion.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高光谱图像的压缩技术中,通常使用重构图像的PSNR来评价编码结果的性能。对于恒生指数的光谱分析应用,考虑光谱分析结果中的误差也很重要。例如,在植被分析中,除了考虑光谱数据的畸变外,还应考虑植被指数的畸变。本文提出了一种考虑植被指数和光谱数据误差的HSI压缩方法。该方法将高光谱数据分离为植被指数光谱数据和残差数据。这两个数据分别使用无缝编码进行编码。通过在码流头部保留植被指数所需的频谱通道,可以在低比特率下进行精确的植被分析。此外,通过对残差数据进行解码,可以在低失真的情况下重建光谱数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral image compression suitable for spectral analysis application
In the compression technique of hyperspectral image (HSI), PSNR of the reconstructed image is usually used for evaluating the performance of the coding results. For the spectral analysis applications of HSI, it is also important to consider the error in the result of spectral analysis. In the vegetation analysis, for example, the distortion of the vegetation index should be considered in addition to the distortion in the spectral data. This paper presents a HSI compression considering the error of both vegetation index and spectral data. The proposed method separates a hyperspectral data into spectral data for vegetation index and residual data. Both of the data are encoded by using a seamless coding individually. By holding the spectral channels required for vegetation index in the head of the code-stream, a precise vegetation analysis can be done in a low bit rate. Additionally, by decoding the residual data, the spectral data can be reconstructed in low distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信