基于脉冲飞行时间照相机的材料识别

Jizhong Zhang, S. Lang, Qiang Wu, Chuan Liu
{"title":"基于脉冲飞行时间照相机的材料识别","authors":"Jizhong Zhang, S. Lang, Qiang Wu, Chuan Liu","doi":"10.1109/ISPCE-CN48734.2019.8958633","DOIUrl":null,"url":null,"abstract":"This study presents a method for material recognition using a pulsed time-of-flight (ToF) camera. The method measures the material bidirectional reflectance distribution function (BRDF) as a feature for material recognition by a pulsed ToF camera. We use the measurements of incident light at different angles to form the BRDF feature vectors. The feature vectors are used to build a training and test set to train and validate a classifier to perform the recognition. We choose the radial basis function (RBF) neural network as a classifier based on the nonlinear characteristics of material BRDF. Finally, we construct a turntable-based measurement system and use the material BRDF as the feature for classifying a variety of materials including metals and plastics. The optimized RBF neural network can achieve a recognition accuracy of 94.6%.","PeriodicalId":221535,"journal":{"name":"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Material Recognition Based on a Pulsed Time-of-Flight Camera\",\"authors\":\"Jizhong Zhang, S. Lang, Qiang Wu, Chuan Liu\",\"doi\":\"10.1109/ISPCE-CN48734.2019.8958633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a method for material recognition using a pulsed time-of-flight (ToF) camera. The method measures the material bidirectional reflectance distribution function (BRDF) as a feature for material recognition by a pulsed ToF camera. We use the measurements of incident light at different angles to form the BRDF feature vectors. The feature vectors are used to build a training and test set to train and validate a classifier to perform the recognition. We choose the radial basis function (RBF) neural network as a classifier based on the nonlinear characteristics of material BRDF. Finally, we construct a turntable-based measurement system and use the material BRDF as the feature for classifying a variety of materials including metals and plastics. The optimized RBF neural network can achieve a recognition accuracy of 94.6%.\",\"PeriodicalId\":221535,\"journal\":{\"name\":\"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCE-CN48734.2019.8958633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-CN48734.2019.8958633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种利用脉冲飞行时间(ToF)相机进行材料识别的方法。该方法测量材料的双向反射分布函数(BRDF)作为脉冲ToF相机识别材料的特征。我们使用不同角度入射光的测量值来形成BRDF特征向量。特征向量用于构建训练和测试集,以训练和验证分类器以执行识别。基于材料BRDF的非线性特性,选择径向基函数(RBF)神经网络作为分类器。最后,我们构建了一个基于转台的测量系统,并以BRDF为特征对金属和塑料等多种材料进行了分类。优化后的RBF神经网络识别准确率达到94.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Recognition Based on a Pulsed Time-of-Flight Camera
This study presents a method for material recognition using a pulsed time-of-flight (ToF) camera. The method measures the material bidirectional reflectance distribution function (BRDF) as a feature for material recognition by a pulsed ToF camera. We use the measurements of incident light at different angles to form the BRDF feature vectors. The feature vectors are used to build a training and test set to train and validate a classifier to perform the recognition. We choose the radial basis function (RBF) neural network as a classifier based on the nonlinear characteristics of material BRDF. Finally, we construct a turntable-based measurement system and use the material BRDF as the feature for classifying a variety of materials including metals and plastics. The optimized RBF neural network can achieve a recognition accuracy of 94.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信