第三届复杂场景推荐研讨会(ComplexRec 2019)

M. Koolen, Toine Bogers, B. Mobasher, A. Tuzhilin
{"title":"第三届复杂场景推荐研讨会(ComplexRec 2019)","authors":"M. Koolen, Toine Bogers, B. Mobasher, A. Tuzhilin","doi":"10.1145/3298689.3346948","DOIUrl":null,"url":null,"abstract":"Over the past decade, recommendation algorithms for ratings prediction and item ranking have steadily matured. However, these state-of-the-art algorithms are typically applied in relatively straightforward and static scenarios: given information about a user's past item preferences in isolation, can we predict whether they will like a new item or rank all unseen items based on predicted interest? In reality, recommendation is often a more complex problem: the evaluation of a list of recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task or need. The goal of the ComplexRec 2019 workshop is to offer an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all solution.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Third workshop on recommendation in complex scenarios (ComplexRec 2019)\",\"authors\":\"M. Koolen, Toine Bogers, B. Mobasher, A. Tuzhilin\",\"doi\":\"10.1145/3298689.3346948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, recommendation algorithms for ratings prediction and item ranking have steadily matured. However, these state-of-the-art algorithms are typically applied in relatively straightforward and static scenarios: given information about a user's past item preferences in isolation, can we predict whether they will like a new item or rank all unseen items based on predicted interest? In reality, recommendation is often a more complex problem: the evaluation of a list of recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task or need. The goal of the ComplexRec 2019 workshop is to offer an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all solution.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3346948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的十年中,用于评级预测和项目排名的推荐算法已经稳步成熟。然而,这些最先进的算法通常应用于相对简单和静态的场景:给定用户过去的物品偏好信息,我们能否预测他们是否会喜欢一个新物品,或者根据预测的兴趣对所有未见过的物品进行排名?在现实中,推荐通常是一个更复杂的问题:对推荐项目列表的评估从来不是在真空中进行的,它通常是用户更复杂的后台任务或需求中的一个步骤。ComplexRec 2019研讨会的目标是提供一个互动的场所,讨论没有简单的一刀切解决方案的复杂场景中的推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Third workshop on recommendation in complex scenarios (ComplexRec 2019)
Over the past decade, recommendation algorithms for ratings prediction and item ranking have steadily matured. However, these state-of-the-art algorithms are typically applied in relatively straightforward and static scenarios: given information about a user's past item preferences in isolation, can we predict whether they will like a new item or rank all unseen items based on predicted interest? In reality, recommendation is often a more complex problem: the evaluation of a list of recommended items never takes place in a vacuum, and it is often a single step in the user's more complex background task or need. The goal of the ComplexRec 2019 workshop is to offer an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信