基于卷积神经网络和迁移学习的心电图分类

Jing Zhou, Aimei Dong
{"title":"基于卷积神经网络和迁移学习的心电图分类","authors":"Jing Zhou, Aimei Dong","doi":"10.1109/IMCEC51613.2021.9482020","DOIUrl":null,"url":null,"abstract":"Deep learning is a branch of machine learning, and its methods are now being used to solve all kinds of problems. Deep learning algorithms can learn advanced features from massive data and automatically extract features, which makes deep learning surpass traditional machine learning algorithms. However, as deep learning algorithms rely on large amounts of data and run too slowly, transfer learning arises in response to this disadvantage. Transfer learning allows the use of existing knowledge in the relevant domain to solve a learning problem with only a small number of sample data in the target domain. Combining the two technologies of deep learning and transfer learning, on the one hand, advanced features of data samples can be automatically learned, and on the other hand, it can get rid of the dependence on sample data capacity. In this paper, the electrocardiogram (ECG) signal into spectrogram, and the model is trained with the ImageNet dataset, and then the trained model is transferred, because AlexNet model needs to be fixed image size, so the last pool layer is replaced by a spatial pyramid pooling layer, finally use Softmax classifier for PhysioNet challenge 2017 electrocardiogram data sets are classified, get a 92.84% accuracy and 83.26% F1.","PeriodicalId":240400,"journal":{"name":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrocardiogram classification based on convolutional neural network and transfer learning\",\"authors\":\"Jing Zhou, Aimei Dong\",\"doi\":\"10.1109/IMCEC51613.2021.9482020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a branch of machine learning, and its methods are now being used to solve all kinds of problems. Deep learning algorithms can learn advanced features from massive data and automatically extract features, which makes deep learning surpass traditional machine learning algorithms. However, as deep learning algorithms rely on large amounts of data and run too slowly, transfer learning arises in response to this disadvantage. Transfer learning allows the use of existing knowledge in the relevant domain to solve a learning problem with only a small number of sample data in the target domain. Combining the two technologies of deep learning and transfer learning, on the one hand, advanced features of data samples can be automatically learned, and on the other hand, it can get rid of the dependence on sample data capacity. In this paper, the electrocardiogram (ECG) signal into spectrogram, and the model is trained with the ImageNet dataset, and then the trained model is transferred, because AlexNet model needs to be fixed image size, so the last pool layer is replaced by a spatial pyramid pooling layer, finally use Softmax classifier for PhysioNet challenge 2017 electrocardiogram data sets are classified, get a 92.84% accuracy and 83.26% F1.\",\"PeriodicalId\":240400,\"journal\":{\"name\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC51613.2021.9482020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC51613.2021.9482020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习是机器学习的一个分支,它的方法现在被用来解决各种问题。深度学习算法可以从海量数据中学习高级特征,并自动提取特征,这使得深度学习超越了传统的机器学习算法。然而,由于深度学习算法依赖于大量数据且运行速度太慢,因此迁移学习应运而生。迁移学习允许使用相关领域的现有知识来解决目标领域中只有少量样本数据的学习问题。将深度学习和迁移学习两种技术相结合,一方面可以自动学习数据样本的高级特征,另一方面可以摆脱对样本数据容量的依赖。本文将心电图(ECG)信号转化为频谱图,并使用ImageNet数据集对模型进行训练,然后对训练后的模型进行传输,由于AlexNet模型需要固定图像大小,因此将最后一层池层替换为空间金字塔池层,最后使用Softmax分类器对PhysioNet挑战2017年的心电图数据集进行分类,获得了92.84%的准确率和83.26%的F1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrocardiogram classification based on convolutional neural network and transfer learning
Deep learning is a branch of machine learning, and its methods are now being used to solve all kinds of problems. Deep learning algorithms can learn advanced features from massive data and automatically extract features, which makes deep learning surpass traditional machine learning algorithms. However, as deep learning algorithms rely on large amounts of data and run too slowly, transfer learning arises in response to this disadvantage. Transfer learning allows the use of existing knowledge in the relevant domain to solve a learning problem with only a small number of sample data in the target domain. Combining the two technologies of deep learning and transfer learning, on the one hand, advanced features of data samples can be automatically learned, and on the other hand, it can get rid of the dependence on sample data capacity. In this paper, the electrocardiogram (ECG) signal into spectrogram, and the model is trained with the ImageNet dataset, and then the trained model is transferred, because AlexNet model needs to be fixed image size, so the last pool layer is replaced by a spatial pyramid pooling layer, finally use Softmax classifier for PhysioNet challenge 2017 electrocardiogram data sets are classified, get a 92.84% accuracy and 83.26% F1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信