混合BAM神经网络的全局鲁棒稳定性分析

N. M. Thoiyab, P. Muruganantham, N. Gunasekaran
{"title":"混合BAM神经网络的全局鲁棒稳定性分析","authors":"N. M. Thoiyab, P. Muruganantham, N. Gunasekaran","doi":"10.1109/CMI50323.2021.9362980","DOIUrl":null,"url":null,"abstract":"In this paper, we study some new sufficient criteria on global stability analysis for the hybrid bidirectional associative memory (BAM) neural networks with multiple time delays. The ultimate focus of this paper is to derive some new generalized sufficient criteria for the global asymptotic robust stability (GARS) of equilibrium point of the time-delayed BAM neural networks. The obtained sufficient conditions are always independent on the delay of system parameters of hybrid BAM neural networks. Finally, numerical example has been given to explain the effectiveness of our results in terms of network parameters.","PeriodicalId":142069,"journal":{"name":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Global Robust Stability Analysis for Hybrid BAM Neural Networks\",\"authors\":\"N. M. Thoiyab, P. Muruganantham, N. Gunasekaran\",\"doi\":\"10.1109/CMI50323.2021.9362980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study some new sufficient criteria on global stability analysis for the hybrid bidirectional associative memory (BAM) neural networks with multiple time delays. The ultimate focus of this paper is to derive some new generalized sufficient criteria for the global asymptotic robust stability (GARS) of equilibrium point of the time-delayed BAM neural networks. The obtained sufficient conditions are always independent on the delay of system parameters of hybrid BAM neural networks. Finally, numerical example has been given to explain the effectiveness of our results in terms of network parameters.\",\"PeriodicalId\":142069,\"journal\":{\"name\":\"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CMI50323.2021.9362980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI50323.2021.9362980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了具有多时滞的混合型双向联想记忆(BAM)神经网络全局稳定性分析的一些新的充分准则。本文的最终目的是得到时滞BAM神经网络平衡点全局渐近鲁棒稳定性的一些新的广义充分判据。所得到的充分条件与混合BAM神经网络系统参数的时延无关。最后,通过数值算例说明了从网络参数的角度分析所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Robust Stability Analysis for Hybrid BAM Neural Networks
In this paper, we study some new sufficient criteria on global stability analysis for the hybrid bidirectional associative memory (BAM) neural networks with multiple time delays. The ultimate focus of this paper is to derive some new generalized sufficient criteria for the global asymptotic robust stability (GARS) of equilibrium point of the time-delayed BAM neural networks. The obtained sufficient conditions are always independent on the delay of system parameters of hybrid BAM neural networks. Finally, numerical example has been given to explain the effectiveness of our results in terms of network parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信