用局部二元模式和独立分量分析乳房x线照片中的微钙化

Spandana Paramkusham, Kunda M. M. Rao, Bvvsn Prabhakar Rao
{"title":"用局部二元模式和独立分量分析乳房x线照片中的微钙化","authors":"Spandana Paramkusham, Kunda M. M. Rao, Bvvsn Prabhakar Rao","doi":"10.29320/SJNPGRJ.3.1.1","DOIUrl":null,"url":null,"abstract":"In India, the average age of developing a breast cancer has undergone a significant shift over last few decades. Most prominent features that indicate breast cancer are microcalcifications. Microcalcifications are tiny calcium deposits deposited on skin and non-palpable. Automatic analysis of microcalcification helps specialist in having more precise decision. The paper presents an approach that involves classification of microcalcifications into benign/malignant in mammograms. Texture features such LBP and statistical features are extracted from ROIs with microcalcification and independent component analysis is applied to reduce the feature set. These feature set is fed to artificial neural networks to classify the ROIs into malignant and benign calcifications.","PeriodicalId":184235,"journal":{"name":"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Microcalcifications Using Block Wise Local Binary Pattern and Independent component analysis in Mammograms\",\"authors\":\"Spandana Paramkusham, Kunda M. M. Rao, Bvvsn Prabhakar Rao\",\"doi\":\"10.29320/SJNPGRJ.3.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In India, the average age of developing a breast cancer has undergone a significant shift over last few decades. Most prominent features that indicate breast cancer are microcalcifications. Microcalcifications are tiny calcium deposits deposited on skin and non-palpable. Automatic analysis of microcalcification helps specialist in having more precise decision. The paper presents an approach that involves classification of microcalcifications into benign/malignant in mammograms. Texture features such LBP and statistical features are extracted from ROIs with microcalcification and independent component analysis is applied to reduce the feature set. These feature set is fed to artificial neural networks to classify the ROIs into malignant and benign calcifications.\",\"PeriodicalId\":184235,\"journal\":{\"name\":\"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29320/SJNPGRJ.3.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SRI JNPG COLLEGE REVELATION A JOURNAL OF POPULAR SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29320/SJNPGRJ.3.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在印度,患乳腺癌的平均年龄在过去几十年里发生了重大变化。微钙化是乳腺癌最显著的特征。微钙化是皮肤上的微小钙沉积,不可触摸。微钙化的自动分析有助于专家做出更精确的判断。本文提出了一种方法,涉及分类微钙化为良性/恶性乳房x线照片。从存在微钙化的roi中提取LBP和统计特征等纹理特征,并采用独立分量分析对特征集进行约简。将这些特征集输入到人工神经网络中,将roi分类为恶性和良性钙化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Microcalcifications Using Block Wise Local Binary Pattern and Independent component analysis in Mammograms
In India, the average age of developing a breast cancer has undergone a significant shift over last few decades. Most prominent features that indicate breast cancer are microcalcifications. Microcalcifications are tiny calcium deposits deposited on skin and non-palpable. Automatic analysis of microcalcification helps specialist in having more precise decision. The paper presents an approach that involves classification of microcalcifications into benign/malignant in mammograms. Texture features such LBP and statistical features are extracted from ROIs with microcalcification and independent component analysis is applied to reduce the feature set. These feature set is fed to artificial neural networks to classify the ROIs into malignant and benign calcifications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信