关于Kronecker产品的Kippenhahn曲线

Xueting Liu, Hongkui Li
{"title":"关于Kronecker产品的Kippenhahn曲线","authors":"Xueting Liu, Hongkui Li","doi":"10.1109/CASE.2009.150","DOIUrl":null,"url":null,"abstract":"In many physical applications, we must solve a system of linear equations AXB=C. We know that the Kronecker product can get a convenient representation for linear equations AXB=C. In this paper, let A and C be deoted 4x4 reducible companion matrices. We study the property of the Kippenhahn curve C_R(C) and of the numerical rang W(A) being an elliptic disc by making use of matrices Kronecker product and the Kippenhahn curve C_R(C) continuely .","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kippenhahn Curves of Kronecker Products\",\"authors\":\"Xueting Liu, Hongkui Li\",\"doi\":\"10.1109/CASE.2009.150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many physical applications, we must solve a system of linear equations AXB=C. We know that the Kronecker product can get a convenient representation for linear equations AXB=C. In this paper, let A and C be deoted 4x4 reducible companion matrices. We study the property of the Kippenhahn curve C_R(C) and of the numerical rang W(A) being an elliptic disc by making use of matrices Kronecker product and the Kippenhahn curve C_R(C) continuely .\",\"PeriodicalId\":294566,\"journal\":{\"name\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"volume\":\"599 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2009.150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在许多物理应用中,我们必须解一个线性方程组AXB=C。我们知道克罗内克积可以很方便地表示线性方程AXB=C。本文设A和C为4x4可约伴矩阵。利用矩阵Kronecker积和Kippenhahn曲线C_R(C)连续研究了Kippenhahn曲线C_R(C)和数值范围W(A)为椭圆盘的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Kippenhahn Curves of Kronecker Products
In many physical applications, we must solve a system of linear equations AXB=C. We know that the Kronecker product can get a convenient representation for linear equations AXB=C. In this paper, let A and C be deoted 4x4 reducible companion matrices. We study the property of the Kippenhahn curve C_R(C) and of the numerical rang W(A) being an elliptic disc by making use of matrices Kronecker product and the Kippenhahn curve C_R(C) continuely .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信