Zhihan Lu, S. Réhman, Muhammad Sikandar Lal Khan, Haibo Li
{"title":"基于基本矩阵的二维视频浮雕三维立体可视化","authors":"Zhihan Lu, S. Réhman, Muhammad Sikandar Lal Khan, Haibo Li","doi":"10.1109/ICVRV.2013.59","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a simple Anaglyph 3D stereo generation algorithm from 2D video sequence with monocular camera. In our novel approach we employ camera pose estimation method to directly generate stereoscopic 3D from 2D video without building depth map explicitly. Our cost effective method is suitable for arbitrary real-world video sequence and produces smooth results. We use image stitching based on plane correspondence using fundamental matrix. To this end we also demonstrate that correspondence plane image stitching based on Homography matrix only cannot generate better result. Furthermore, we utilize the structure from motion (with fundamental matrix) based reconstructed camera pose model to accomplish visual anaglyph 3D illusion. The proposed approach demonstrates a very good performance for most of the video sequences.","PeriodicalId":179465,"journal":{"name":"2013 International Conference on Virtual Reality and Visualization","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Anaglyph 3D Stereoscopic Visualization of 2D Video Based on Fundamental Matrix\",\"authors\":\"Zhihan Lu, S. Réhman, Muhammad Sikandar Lal Khan, Haibo Li\",\"doi\":\"10.1109/ICVRV.2013.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a simple Anaglyph 3D stereo generation algorithm from 2D video sequence with monocular camera. In our novel approach we employ camera pose estimation method to directly generate stereoscopic 3D from 2D video without building depth map explicitly. Our cost effective method is suitable for arbitrary real-world video sequence and produces smooth results. We use image stitching based on plane correspondence using fundamental matrix. To this end we also demonstrate that correspondence plane image stitching based on Homography matrix only cannot generate better result. Furthermore, we utilize the structure from motion (with fundamental matrix) based reconstructed camera pose model to accomplish visual anaglyph 3D illusion. The proposed approach demonstrates a very good performance for most of the video sequences.\",\"PeriodicalId\":179465,\"journal\":{\"name\":\"2013 International Conference on Virtual Reality and Visualization\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Virtual Reality and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRV.2013.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Virtual Reality and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2013.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anaglyph 3D Stereoscopic Visualization of 2D Video Based on Fundamental Matrix
In this paper, we propose a simple Anaglyph 3D stereo generation algorithm from 2D video sequence with monocular camera. In our novel approach we employ camera pose estimation method to directly generate stereoscopic 3D from 2D video without building depth map explicitly. Our cost effective method is suitable for arbitrary real-world video sequence and produces smooth results. We use image stitching based on plane correspondence using fundamental matrix. To this end we also demonstrate that correspondence plane image stitching based on Homography matrix only cannot generate better result. Furthermore, we utilize the structure from motion (with fundamental matrix) based reconstructed camera pose model to accomplish visual anaglyph 3D illusion. The proposed approach demonstrates a very good performance for most of the video sequences.