双线性递归神经网络在负荷预测中的应用

Jae-Young Kim, Dong-Chul Park, Dong-Min Woo
{"title":"双线性递归神经网络在负荷预测中的应用","authors":"Jae-Young Kim, Dong-Chul Park, Dong-Min Woo","doi":"10.1109/AICCSA.2010.5586969","DOIUrl":null,"url":null,"abstract":"Prediction of electric load by using Pruned Bilinear Recurrent Neural Network (PBRNN) is proposed and presented in this paper. The PBRNN was developed to alleviate the computational cost associated with the Bilinear Recurrent Neural Network by using a pruning procedure. Since electric loads have a time-series characteristic, a prediction scheme based on the PBRNN can be an optimal candidate for the electric load prediction problem. Experiments are conducted on a load data set from the North-American Electric Utility (NAEU). Results show that the Pruned BRNN-based prediction scheme outperforms the conventional Multi- Layer Perceptron Type Neural Network (MLPNN) in terms of the Mean Absolute Percentage Error(MAPE).","PeriodicalId":352946,"journal":{"name":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Pruned Bilinear Recurrent Neural Network to load prediction\",\"authors\":\"Jae-Young Kim, Dong-Chul Park, Dong-Min Woo\",\"doi\":\"10.1109/AICCSA.2010.5586969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of electric load by using Pruned Bilinear Recurrent Neural Network (PBRNN) is proposed and presented in this paper. The PBRNN was developed to alleviate the computational cost associated with the Bilinear Recurrent Neural Network by using a pruning procedure. Since electric loads have a time-series characteristic, a prediction scheme based on the PBRNN can be an optimal candidate for the electric load prediction problem. Experiments are conducted on a load data set from the North-American Electric Utility (NAEU). Results show that the Pruned BRNN-based prediction scheme outperforms the conventional Multi- Layer Perceptron Type Neural Network (MLPNN) in terms of the Mean Absolute Percentage Error(MAPE).\",\"PeriodicalId\":352946,\"journal\":{\"name\":\"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICCSA.2010.5586969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2010.5586969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于双线性递归神经网络(PBRNN)的电力负荷预测方法。PBRNN是为了减少双线性递归神经网络的计算量而开发的。由于电力负荷具有时间序列特征,基于PBRNN的预测方案是电力负荷预测问题的最优选择。在北美电力公司(NAEU)的负荷数据集上进行了实验。结果表明,基于剪枝brnn的预测方案在平均绝对百分比误差(MAPE)方面优于传统的多层感知器类型神经网络(MLPNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Pruned Bilinear Recurrent Neural Network to load prediction
Prediction of electric load by using Pruned Bilinear Recurrent Neural Network (PBRNN) is proposed and presented in this paper. The PBRNN was developed to alleviate the computational cost associated with the Bilinear Recurrent Neural Network by using a pruning procedure. Since electric loads have a time-series characteristic, a prediction scheme based on the PBRNN can be an optimal candidate for the electric load prediction problem. Experiments are conducted on a load data set from the North-American Electric Utility (NAEU). Results show that the Pruned BRNN-based prediction scheme outperforms the conventional Multi- Layer Perceptron Type Neural Network (MLPNN) in terms of the Mean Absolute Percentage Error(MAPE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信