智能交通与网联车辆的大数据计算与机器学习

Sanjay Ranka
{"title":"智能交通与网联车辆的大数据计算与机器学习","authors":"Sanjay Ranka","doi":"10.1109/fmec49853.2020.9144828","DOIUrl":null,"url":null,"abstract":": We are developing machine learning algorithms and software to fuse real-time feeds from video cameras and traffic sensor data to generate real-time detection, classification, and space-time trajectories of individual vehicles and pedestrians. This information is then transmitted to a cloud-based system and then synthesized to create a real-time city-wide traffic palette. I will discuss our research on:","PeriodicalId":245537,"journal":{"name":"International Conference on Fog and Mobile Edge Computing","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data Computing and Machine Learning for Intelligent Transportation and Connected Vehicles\",\"authors\":\"Sanjay Ranka\",\"doi\":\"10.1109/fmec49853.2020.9144828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": We are developing machine learning algorithms and software to fuse real-time feeds from video cameras and traffic sensor data to generate real-time detection, classification, and space-time trajectories of individual vehicles and pedestrians. This information is then transmitted to a cloud-based system and then synthesized to create a real-time city-wide traffic palette. I will discuss our research on:\",\"PeriodicalId\":245537,\"journal\":{\"name\":\"International Conference on Fog and Mobile Edge Computing\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Fog and Mobile Edge Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fmec49853.2020.9144828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fog and Mobile Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fmec49853.2020.9144828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们正在开发机器学习算法和软件,以融合来自摄像机和交通传感器数据的实时反馈,生成单个车辆和行人的实时检测、分类和时空轨迹。然后,这些信息被传输到一个基于云的系统,然后合成成一个实时的全市交通调色板。我将讨论我们的研究:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data Computing and Machine Learning for Intelligent Transportation and Connected Vehicles
: We are developing machine learning algorithms and software to fuse real-time feeds from video cameras and traffic sensor data to generate real-time detection, classification, and space-time trajectories of individual vehicles and pedestrians. This information is then transmitted to a cloud-based system and then synthesized to create a real-time city-wide traffic palette. I will discuss our research on:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信