仅使用虚拟世界数据训练用于多类目标检测的卷积神经网络

Erik Bochinski, Volker Eiselein, T. Sikora
{"title":"仅使用虚拟世界数据训练用于多类目标检测的卷积神经网络","authors":"Erik Bochinski, Volker Eiselein, T. Sikora","doi":"10.1109/AVSS.2016.7738056","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Training a convolutional neural network for multi-class object detection using solely virtual world data\",\"authors\":\"Erik Bochinski, Volker Eiselein, T. Sikora\",\"doi\":\"10.1109/AVSS.2016.7738056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

卷积神经网络是当前目标检测和分类系统的热门选择。它们的性能不断提高,但为了进行有效的训练,需要大量手工标记的数据集。我们通过在虚拟世界中合成数据集,解决了为CNN训练获得定制的、足够大的数据集的问题,从而消除了在创建地面真值时繁琐的人类交互的需要。我们开发了一个基于cnn的多类检测系统,该系统仅在虚拟世界数据上进行训练,与最先进的检测系统相比,它取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training a convolutional neural network for multi-class object detection using solely virtual world data
Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信