{"title":"仅使用虚拟世界数据训练用于多类目标检测的卷积神经网络","authors":"Erik Bochinski, Volker Eiselein, T. Sikora","doi":"10.1109/AVSS.2016.7738056","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Training a convolutional neural network for multi-class object detection using solely virtual world data\",\"authors\":\"Erik Bochinski, Volker Eiselein, T. Sikora\",\"doi\":\"10.1109/AVSS.2016.7738056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Training a convolutional neural network for multi-class object detection using solely virtual world data
Convolutional neural networks are a popular choice for current object detection and classification systems. Their performance improves constantly but for effective training, large, hand-labeled datasets are required. We address the problem of obtaining customized, yet large enough datasets for CNN training by synthesizing them in a virtual world, thus eliminating the need for tedious human interaction for ground truth creation. We developed a CNN-based multi-class detection system that was trained solely on virtual world data and achieves competitive results compared to state-of-the-art detection systems.