对称张量z特征值问题的可行牛顿方法

Jiefeng Xu, Donghui Li, Xueli Bai
{"title":"对称张量z特征值问题的可行牛顿方法","authors":"Jiefeng Xu, Donghui Li, Xueli Bai","doi":"10.1080/10556788.2022.2142586","DOIUrl":null,"url":null,"abstract":"Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush–Kuhn–Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a sequence of feasible points such that the sequence of function evaluations is decreasing. These methods can be regarded as extensions of the descent methods for unconstrained optimization problems. We pay particular attention to the Newton method. We show that under appropriate conditions, the Newton method is globally and quadratically convergent. Moreover, after finitely many iterations, the unit steplength will always be accepted. We also propose a nonlinear equations-based Newton method and establish its global and quadratic convergence. In the end, we do several numerical experiments to test the proposed Newton methods. The results show that both Newton methods are very efficient.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feasible Newton methods for symmetric tensor Z-eigenvalue problems\",\"authors\":\"Jiefeng Xu, Donghui Li, Xueli Bai\",\"doi\":\"10.1080/10556788.2022.2142586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush–Kuhn–Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a sequence of feasible points such that the sequence of function evaluations is decreasing. These methods can be regarded as extensions of the descent methods for unconstrained optimization problems. We pay particular attention to the Newton method. We show that under appropriate conditions, the Newton method is globally and quadratically convergent. Moreover, after finitely many iterations, the unit steplength will always be accepted. We also propose a nonlinear equations-based Newton method and establish its global and quadratic convergence. In the end, we do several numerical experiments to test the proposed Newton methods. The results show that both Newton methods are very efficient.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2142586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2142586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

寻找对称张量的z特征对等价于寻找球面约束最小化问题的Karush-Kuhn-Tucker点。基于这一等价性,本文首先提出了一类求对称张量的z特征对的迭代方法。每种方法都能产生一系列可行点,使得函数求值的顺序递减。这些方法可以看作是无约束优化问题下降方法的扩展。我们特别注意牛顿法。我们证明了在适当的条件下,牛顿方法是全局和二次收敛的。而且,经过有限次迭代后,单位步长总是可以接受的。提出了一种基于非线性方程的牛顿方法,并证明了其全局收敛性和二次收敛性。最后,我们做了几个数值实验来验证所提出的牛顿方法。结果表明,这两种牛顿方法都是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasible Newton methods for symmetric tensor Z-eigenvalue problems
Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush–Kuhn–Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a sequence of feasible points such that the sequence of function evaluations is decreasing. These methods can be regarded as extensions of the descent methods for unconstrained optimization problems. We pay particular attention to the Newton method. We show that under appropriate conditions, the Newton method is globally and quadratically convergent. Moreover, after finitely many iterations, the unit steplength will always be accepted. We also propose a nonlinear equations-based Newton method and establish its global and quadratic convergence. In the end, we do several numerical experiments to test the proposed Newton methods. The results show that both Newton methods are very efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信