M. Olivero, A. Mirigaldi, W. Blanc, M. Benabdesselam, F. Mady, C. Molardi, D. Tosi, A. Vallan, G. Perrone
{"title":"掺铝硅酸盐光纤辐射剂量传感器的初步研究","authors":"M. Olivero, A. Mirigaldi, W. Blanc, M. Benabdesselam, F. Mady, C. Molardi, D. Tosi, A. Vallan, G. Perrone","doi":"10.1109/MeMeA49120.2020.9137331","DOIUrl":null,"url":null,"abstract":"The paper reports on the first demonstration of in-situ, real-time dosimetry realized with an enhanced back-scattering optical fiber and a high-resolution optical back-scattering reflectometry measurement. This work is devised to overcome the current problems in monitoring radiotherapy treatments, in particular the difficult evaluation of not only the actual x-ray dose that is accumulated on the target volume, but also the distribution profile of the ionizing radiation beam. The experiments have been conducted by evaluating the radiation- induced spectral shift of the Rayleigh back-scattering along the fiber under test during x-ray exposure, in a radiation chamber. The sensing region is a section of aluminum-doped silicate fiber, that overcomes the poor sensitivity to radiation of standard, germanium-doped, silicate fibers for telecom applications. The preliminary results show that it is possible to remotely track the x-ray dose at high dose rates (700 Gy/min) and at rates closer to therapeutic values (22 Gy/min). A linear relationship between accumulated dose and spectral shift has been found. This research aims at developing a dose sensor with the most demanding features of small form factor, spatial profiling and remote interrogation.","PeriodicalId":152478,"journal":{"name":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preliminary investigation of radiation dose sensors based on aluminum-doped silicate optical fibers\",\"authors\":\"M. Olivero, A. Mirigaldi, W. Blanc, M. Benabdesselam, F. Mady, C. Molardi, D. Tosi, A. Vallan, G. Perrone\",\"doi\":\"10.1109/MeMeA49120.2020.9137331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reports on the first demonstration of in-situ, real-time dosimetry realized with an enhanced back-scattering optical fiber and a high-resolution optical back-scattering reflectometry measurement. This work is devised to overcome the current problems in monitoring radiotherapy treatments, in particular the difficult evaluation of not only the actual x-ray dose that is accumulated on the target volume, but also the distribution profile of the ionizing radiation beam. The experiments have been conducted by evaluating the radiation- induced spectral shift of the Rayleigh back-scattering along the fiber under test during x-ray exposure, in a radiation chamber. The sensing region is a section of aluminum-doped silicate fiber, that overcomes the poor sensitivity to radiation of standard, germanium-doped, silicate fibers for telecom applications. The preliminary results show that it is possible to remotely track the x-ray dose at high dose rates (700 Gy/min) and at rates closer to therapeutic values (22 Gy/min). A linear relationship between accumulated dose and spectral shift has been found. This research aims at developing a dose sensor with the most demanding features of small form factor, spatial profiling and remote interrogation.\",\"PeriodicalId\":152478,\"journal\":{\"name\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA49120.2020.9137331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA49120.2020.9137331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preliminary investigation of radiation dose sensors based on aluminum-doped silicate optical fibers
The paper reports on the first demonstration of in-situ, real-time dosimetry realized with an enhanced back-scattering optical fiber and a high-resolution optical back-scattering reflectometry measurement. This work is devised to overcome the current problems in monitoring radiotherapy treatments, in particular the difficult evaluation of not only the actual x-ray dose that is accumulated on the target volume, but also the distribution profile of the ionizing radiation beam. The experiments have been conducted by evaluating the radiation- induced spectral shift of the Rayleigh back-scattering along the fiber under test during x-ray exposure, in a radiation chamber. The sensing region is a section of aluminum-doped silicate fiber, that overcomes the poor sensitivity to radiation of standard, germanium-doped, silicate fibers for telecom applications. The preliminary results show that it is possible to remotely track the x-ray dose at high dose rates (700 Gy/min) and at rates closer to therapeutic values (22 Gy/min). A linear relationship between accumulated dose and spectral shift has been found. This research aims at developing a dose sensor with the most demanding features of small form factor, spatial profiling and remote interrogation.