多核分布式字典学习:微阵列基因表达双聚类案例研究

Stephen Laide, J. McAllister
{"title":"多核分布式字典学习:微阵列基因表达双聚类案例研究","authors":"Stephen Laide, J. McAllister","doi":"10.1109/ICASSP.2017.7952340","DOIUrl":null,"url":null,"abstract":"The increasing pervasion and scale of machine learning technologies is posing fundamental challenges for their realisation. In the main, current algorithms are centralised, with a large number of processing agents, distributed across parallel processing resources, accessing a single, very large data object. This creates bottlenecks as a result of limited memory access rates. Distributed learning has the potential to resolve this problem by employing networks of co-operating agents each operating on subsets of the data, but as yet their suitability for realisation on parallel architectures such as multicore are unknown. This paper presents the results of a case study deploying distributed dictionary learning for microarray gene expression bi-clustering on a 16-core Epiphany multicore. It shows that distributed learning approaches can enable near-linear speed-up with the number of processing resources and, via the use of DMA-based communication, a 50% increase in throughput can be enabled.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multicore distributed dictionary learning: A microarray gene expression biclustering case study\",\"authors\":\"Stephen Laide, J. McAllister\",\"doi\":\"10.1109/ICASSP.2017.7952340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing pervasion and scale of machine learning technologies is posing fundamental challenges for their realisation. In the main, current algorithms are centralised, with a large number of processing agents, distributed across parallel processing resources, accessing a single, very large data object. This creates bottlenecks as a result of limited memory access rates. Distributed learning has the potential to resolve this problem by employing networks of co-operating agents each operating on subsets of the data, but as yet their suitability for realisation on parallel architectures such as multicore are unknown. This paper presents the results of a case study deploying distributed dictionary learning for microarray gene expression bi-clustering on a 16-core Epiphany multicore. It shows that distributed learning approaches can enable near-linear speed-up with the number of processing resources and, via the use of DMA-based communication, a 50% increase in throughput can be enabled.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习技术的日益普及和规模正在为它们的实现带来根本性的挑战。总的来说,当前的算法是集中式的,具有大量的处理代理,分布在并行处理资源上,访问单个非常大的数据对象。由于内存访问速率有限,这会造成瓶颈。分布式学习有可能通过使用协作代理网络来解决这个问题,每个代理都在数据的子集上操作,但到目前为止,它们在并行架构(如多核)上实现的适用性尚不清楚。本文介绍了在16核Epiphany多核上部署用于微阵列基因表达双聚类的分布式字典学习的案例研究结果。它表明,分布式学习方法可以实现处理资源数量的近线性加速,并且通过使用基于dma的通信,可以使吞吐量增加50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicore distributed dictionary learning: A microarray gene expression biclustering case study
The increasing pervasion and scale of machine learning technologies is posing fundamental challenges for their realisation. In the main, current algorithms are centralised, with a large number of processing agents, distributed across parallel processing resources, accessing a single, very large data object. This creates bottlenecks as a result of limited memory access rates. Distributed learning has the potential to resolve this problem by employing networks of co-operating agents each operating on subsets of the data, but as yet their suitability for realisation on parallel architectures such as multicore are unknown. This paper presents the results of a case study deploying distributed dictionary learning for microarray gene expression bi-clustering on a 16-core Epiphany multicore. It shows that distributed learning approaches can enable near-linear speed-up with the number of processing resources and, via the use of DMA-based communication, a 50% increase in throughput can be enabled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信