链接和签名公式的斜率

A. Degtyarev, V. Florens, Ana G. Lecuona
{"title":"链接和签名公式的斜率","authors":"A. Degtyarev, V. Florens, Ana G. Lecuona","doi":"10.1090/conm/772/15483","DOIUrl":null,"url":null,"abstract":"We present a new invariant, called slope, of a colored link in an integral homology sphere and use this invariant to complete the signature formula for the splice of two links. We develop a number of ways of computing the slope and a few vanishing results. Besides, we discuss the concordance invariance of the slope and establish its close relation to the Conway polynomials, on the one hand, and to the Kojima–Yamasaki \n\n \n η\n \\eta\n \n\n-function (in the univariate case) and Cochran invariants, on the other hand.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Slopes of links and signature formulas\",\"authors\":\"A. Degtyarev, V. Florens, Ana G. Lecuona\",\"doi\":\"10.1090/conm/772/15483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new invariant, called slope, of a colored link in an integral homology sphere and use this invariant to complete the signature formula for the splice of two links. We develop a number of ways of computing the slope and a few vanishing results. Besides, we discuss the concordance invariance of the slope and establish its close relation to the Conway polynomials, on the one hand, and to the Kojima–Yamasaki \\n\\n \\n η\\n \\\\eta\\n \\n\\n-function (in the univariate case) and Cochran invariants, on the other hand.\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

给出了积分同调球上彩色连杆的一个新的不变量斜率,并利用该不变量补全了两连杆拼接的签名公式。我们开发了许多计算斜率的方法和一些消失的结果。此外,我们讨论了斜率的一致性不变性,并建立了它与Conway多项式、Kojima-Yamasaki η \eta -函数(在单变量情况下)和Cochran不变量的密切关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slopes of links and signature formulas
We present a new invariant, called slope, of a colored link in an integral homology sphere and use this invariant to complete the signature formula for the splice of two links. We develop a number of ways of computing the slope and a few vanishing results. Besides, we discuss the concordance invariance of the slope and establish its close relation to the Conway polynomials, on the one hand, and to the Kojima–Yamasaki η \eta -function (in the univariate case) and Cochran invariants, on the other hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信